SILICON AS A BIOSTIMULANT IN CUCUMBER CULTIVATION (Cucumis sativus L.)]
Abstract
Keywords
Full Text:
PDFReferences
Agostinho, F., Tubana, B., Martins, M. and Datnoff D., 2017. Effect of different silicon sources on yield and silicon uptake of rice grown under varying phosphorus rates. Plants 6, pp. 1-17. https://doi.org/10.3390/plants6030035.
Alcantra, E., Sales, M.M.A., Viana, C.F.A. and Vitor, M.R.F., 2021 Aproveitamento do silicio derivado da estração do quartzito são thomé na cultura do pepino. Revista Agustus 27 (54), pp. 48-58. https://doi.org/10.15202/10.15202/1981896.2021v27n54p48.
Babu, T. and Nagabovanalli, P., 2017. Efect of silicon amendment on soil-cadmiun availability and uptake in rice grown in different moisture regimes. Journal of Plant Nutrition, 40(17), pp. 2440-2457. https://doi.org/10.1080/01904167.
Bent, E., 2008. A?cido sili?cico. Cultivar de acuerdo con la naturaleza Parte I- II. Be?rgamo. Italia. Pa?g. 6-15. http://www.hortcom.files.wordpress.com Fecha de consulta 30 de junio de 2022.
Cabezas, G.A., Camus, A.F., Esteban, C.W., González, V.F.A. and Mazuela, A.P., 2022. El silicio (Si) y su efecto mitigador del estrés salino en cultivos hortícolas. Idesia (Arica), 40, pp. 129-133. http://dx.doi.org/10.4067/S0718-34292022000100129.
Cágal, Á.C., 2013. Efecto de diferentes concentraciones de Silicio, adicionado al suelo en el cultivo de Chile Habanero a cielo abierto. Revista Biológico Agropecuaria Tuxpan, 1(2), pp. 53-57. https://doi.org/10.47808/revistabioagro.v1i2.228
Hu, A.Y., Xu, S.N., Qin, D.N., Li, W. and Zhao, X.Q., 2020. Role of silicon in mediating phosphorus imbalance in plants. Plants, 10(1), pp. 51. https://doi.org/10.3390/plants10010051
Kaloterakis, N., Van Delden, S.H., Hartley, S. and De Deyn, G.B., 2021. Silicon application and plant growth promoting rhizobacteria consisting of six pure Bacillus species alleviate salinity stress in cucumber (Cucumis sativus L). Scientia Horticulturae, 288, pp. 1-13. https://doi.org/10.1016/j.scienta.2021.110383.
Katz, O., Puppe, D., Kaczorek, D., Prakash, N.B. and Schaller, J., 2021. Silicon in the soil–plant continuum: Intricate feedback mechanisms within ecosystems. Plants, 10(4), pp. 652. https://doi.org/10.3390/plants10040652
Kovács, S., Kutasy, E. and Csajbók, J., 2022. The multiple role of silicon nutrition in alleviating environmental stresses in sustainable crop production. Plants, 11(9), pp. 1223. https://doi.org/10.3390/plants11091223
Kowalska, J., Tyburski, J., Bocianowski, J. and Matysiak, K., 2020. Methods of silicon application on organic spring wheat (Triticum aestivum L. spp. vulgare) cultivars grown across two contrasting precipitation years. Agronomy, 10, pp. 1-14. https://doi.org/10.3390/agronomy10111655.
Li, R., Sun, Y., Wang, H. and Wang, H., 2022. Advances in understanding silicon transporters and the benefits to silicon-associated disease resistance in plants. Applied Sciences, 12(7), pp. 3282. https://doi.org/10.3390/app12073282
Luan, H., Niu, C., Nie, X., Li, Y. and Wei, M., 2022. Transcriptome and physiological analysis of rootstock types and silicon affecting cold tolerance of cucumber seedlings. Plants, 11(3), pp. 445. https://doi.org/10.3390/plants11030445
Lyu, J., Jin, N., Meng, X., Jin, L., Wang, S., Xiao, X. and Yu, J., 2022. Exogenous silicon alleviates the adverse effects of cinnamic acid-induced autotoxicity stress on cucumber seedling growth. Frontiers in Plant Science, 13, pp. 968514. https://doi.org/10.3389/fpls.2022.968514
Martin, T.N., Leivas, U. and Barella, J.D., 2017. Foliar application of silicon on yield components of wheat crops. Caatinga, 30, pp. 578-585. http://doi.org/10.1590/1983-21252017v30n305rc
Meena, V., Dotaniya, M., Coumar, V. and Subba, A., 2014. A Case for silicon fertilization to improve crop yields in tropical soils. Proceedings of the Natural Academy of Sciences, India, Section B Biology Sciences, 84, pp. 505–518. https://doi.org/10.1007/s40011-013-0270.
Mehmood, S., Wang, X., Ahmed, W., Imtiaz, M., Ditta, A., Rizwan, M. and Li, W., 2021. Removal mechanisms of slag against potentially toxic elements in soil and plants for sustainable agriculture development: A critical review. Sustainability, 13, pp. 5255. https://doi.org/10.3390/su13095255
Minitab, LLC., 2019. Minitab (Version 19) [Computer software]. https://www.minitab.com
Pahalvi, H.N., Rafiya, L., Rashid, S., Nisar, B. and Kamili, A.N., 2021. Chemical fertilizers and their impact on soil health. Microbiota and Biofertilizers, 2: pp. 1-20. http://dx.doi.org/10.1007/978-3-030-61010-4_1.
Parra-Terraza, S., Baca-Castillo, G.A., Carrillo-González, R., Kohashi-Shibata, J., Martínez-Garza, A. and Trejo-López, C., 2004. Silicio y potencial osmótico de la solución nutritiva en el crecimiento del pepino. Terra Latinoaméricana, 33 (4), pp. 467-473. http://www.redalyc.org/articulo.oa?id=57311096011.
Pavlovic, J., Kostic, L., Bosnic, P., Kirkby, E. A. and Nikolic, M., 2021. Interactions of silicon with essential and beneficial elements in plants. Frontiers in Plant Science, 12, pp. 697592. https://doi.org/10.3389/fpls.2021.697592
Ramac, 2015. Rappaccioli McGregor S.A. Foro informativo. Agroqui?micos de Nicaragua. http://www.ramac.com.ni Fecha de consulta 3 de agosto de 2022.
Rea, R.S., Islam, M.R., Rahman, M.M., Nath, B. and Mix, K., 2022. Growth, nutrient accumulation, and drought tolerance in crop plants with silicon application: A review. Sustainability, 14(8), pp. 4525. https://doi.org/10.3390/su14084525
Shen, Z., Cheng, X., Li, X., Deng, X., Dong, X., Wang, S. and Pu, X., 2022. Effects of silicon application on leaf structure and physiological characteristics of Glycyrrhiza uralensis Fisch. and Glycyrrhiza inflata Bat. under salt treatment. BMC Plant Biology, 22, pp. 390. https://doi.org/10.1186/s12870-022-03783-7
Shivaraj, S.M., Mandlik, R., Bhat, J.A., Raturi, G., Elbaum, R., Alexander, L. and Sonah, H., 2022. Outstanding questions on the beneficial role of silicon in crop plants. Plant and Cell Physiology, 63(1), pp. 4-18. https://doi.org/10.1093/pcp/pcab145
Sun, H., Duan, Y., Qi, X., Zhang, L., Huo, H. and Gong, H., 2018. Isolation and functional characterization of CsLsi2, a cucumber silicon efflux transporter gene. Annals of Botany, 122(4), pp. 641-648. https://doi.org/10.1093/aob/mcy103
Sun, S., Yang, Z., Song, Z., Wang, N., Guo, N., Niu, J. and Chen, S., 2022. Silicon enhances plant resistance to Fusarium wilt by promoting antioxidant potential and photosynthetic capacity in cucumber (Cucumis sativus L.). Frontiers in Plant Science, 13, pp. 1011859. https://doi.org/10.3389/fpls.2022.1011859
Tayade, R., Ghimire, A., Khan, W., Lay, L., Attipoe, J. Q. and Kim, Y., 2022. Silicon as a smart fertilizer for sustainability and crop improvement. Biomolecules, 12(8), pp. 1027. https://doi.org/10.3390/biom12081027
Teo, P.T., Zakaria, S.K., Salleh, S.Z., Taib, M.A.A., Mohd Sharif, N., Abu Seman, A., and Mamat, S., 2020. Assessment of electric arc furnace (EAF) steel slag waste’s recycling options into value added green products: A review. Metals, 10, pp. 1347. https://doi.org/10.3390/met10101347
Thapa, S., Bhandari, A., Ghimire, R., Xue, Q., Kidwaro, F., Ghatrehsamani, S. and Goodwin, M., 2021. Managing micronutrients for improving soil fertility, health, and soybean yield. Sustainability, 13(21), pp. 11766. https://doi.org/10.3390/su132111766
Wu, J., Guo, J., Hu, Y. and Gong, H., 2015. Distinct physiological responses of tomato and cucumber plants in silicon-mediated alleviation of cadmium stress. Frontiers in Plant Science, 6, pp. 141391. https://doi.org/10.3389/fpls.2015.00453
URN: http://www.revista.ccba.uady.mx/urn:ISSN:1870-0462-tsaes.v27i3.53596
DOI: http://dx.doi.org/10.56369/tsaes.5359
Copyright (c) 2024 Juan José Reyes Pérez, Alejandro Palacios, luis Tarquino Llerena Ramos, Bryan Lincoln llerena Fuentes, Luis Guillermo hernández Montiel, Ramón Klever Macias Pettao, Erendira Aragón Sánchez
This work is licensed under a Creative Commons Attribution 4.0 International License.