SILICON AS A BIOSTIMULANT IN CUCUMBER CULTIVATION (Cucumis sativus L.)]

Juan José Reyes Pérez, Luis Tarquino Llerena Ramos, Juan Antonio Torres Rodriguez, Luis Guillermo Hernández Montiel, Ramón Klever Macias Pettao, Erendira Aragón Sánchez, Alejandro Palacios

Abstract


Background. The use of silicon as a fertilizer can reduce the need to use chemical fertilizers and thereby prevent the adverse effects of the latter. Objective. To evaluate silicon as a biostimulant in the cultivation of cucumber (Cucumis sativus L.) under greenhouse conditions. Methodology. Four concentrations of silicon dioxide (0, 0.15, 0.21 and 0.27 g of SiO2 per plant) were applied to the plant at six, 20 and 28 d after transplanting (six days after the emergency). At 40 days after sowing, the length of guides (m), stem diameter (mm) and number of leaves were determined. Likewise, the number of flowers, number of fruits, length fruits, diameter and weight of the fruit and yield (kg ha-1). The variables were analyzed using a general linear model and polynomials by regression. Results. The treatment of 0.22 g of SiO2 per plant increased stem diameter and length of the guides. The concentration of 0.27 g of SiO2 per plant had a positive influenced the growth of the cucumber crop, allowing fruit harvests of greater length, weight and diameter and a greater number of fruits per plant. Implications. It is possible to increase the yield of cucumber crops by applying silicon. Conclusions. The use of SiO2 at concentrations of 0.27 g per cucumber plant under greenhouse conditions increases it yield per hectare.

Keywords


Yield; silicon dioxide; greenhouse; morphometric variables; productive variables.

Full Text:

PDF

References


Agostinho, F., Tubana, B., Martins, M. and Datnoff D., 2017. Effect of different silicon sources on yield and silicon uptake of rice grown under varying phosphorus rates. Plants 6, pp. 1-17. https://doi.org/10.3390/plants6030035.

Alcantra, E., Sales, M.M.A., Viana, C.F.A. and Vitor, M.R.F., 2021 Aproveitamento do silicio derivado da estração do quartzito são thomé na cultura do pepino. Revista Agustus 27 (54), pp. 48-58. https://doi.org/10.15202/10.15202/1981896.2021v27n54p48.

Babu, T. and Nagabovanalli, P., 2017. Efect of silicon amendment on soil-cadmiun availability and uptake in rice grown in different moisture regimes. Journal of Plant Nutrition, 40(17), pp. 2440-2457. https://doi.org/10.1080/01904167.

Bent, E., 2008. A?cido sili?cico. Cultivar de acuerdo con la naturaleza Parte I- II. Be?rgamo. Italia. Pa?g. 6-15. http://www.hortcom.files.wordpress.com Fecha de consulta 30 de junio de 2022.

Cabezas, G.A., Camus, A.F., Esteban, C.W., González, V.F.A. and Mazuela, A.P., 2022. El silicio (Si) y su efecto mitigador del estrés salino en cultivos hortícolas. Idesia (Arica), 40, pp. 129-133. http://dx.doi.org/10.4067/S0718-34292022000100129.

Cágal, Á.C., 2013. Efecto de diferentes concentraciones de Silicio, adicionado al suelo en el cultivo de Chile Habanero a cielo abierto. Revista Biológico Agropecuaria Tuxpan, 1(2), pp. 53-57. https://doi.org/10.47808/revistabioagro.v1i2.228

Hu, A.Y., Xu, S.N., Qin, D.N., Li, W. and Zhao, X.Q., 2020. Role of silicon in mediating phosphorus imbalance in plants. Plants, 10(1), pp. 51. https://doi.org/10.3390/plants10010051

Kaloterakis, N., Van Delden, S.H., Hartley, S. and De Deyn, G.B., 2021. Silicon application and plant growth promoting rhizobacteria consisting of six pure Bacillus species alleviate salinity stress in cucumber (Cucumis sativus L). Scientia Horticulturae, 288, pp. 1-13. https://doi.org/10.1016/j.scienta.2021.110383.

Katz, O., Puppe, D., Kaczorek, D., Prakash, N.B. and Schaller, J., 2021. Silicon in the soil–plant continuum: Intricate feedback mechanisms within ecosystems. Plants, 10(4), pp. 652. https://doi.org/10.3390/plants10040652

Kovács, S., Kutasy, E. and Csajbók, J., 2022. The multiple role of silicon nutrition in alleviating environmental stresses in sustainable crop production. Plants, 11(9), pp. 1223. https://doi.org/10.3390/plants11091223

Kowalska, J., Tyburski, J., Bocianowski, J. and Matysiak, K., 2020. Methods of silicon application on organic spring wheat (Triticum aestivum L. spp. vulgare) cultivars grown across two contrasting precipitation years. Agronomy, 10, pp. 1-14. https://doi.org/10.3390/agronomy10111655.

Li, R., Sun, Y., Wang, H. and Wang, H., 2022. Advances in understanding silicon transporters and the benefits to silicon-associated disease resistance in plants. Applied Sciences, 12(7), pp. 3282. https://doi.org/10.3390/app12073282

Luan, H., Niu, C., Nie, X., Li, Y. and Wei, M., 2022. Transcriptome and physiological analysis of rootstock types and silicon affecting cold tolerance of cucumber seedlings. Plants, 11(3), pp. 445. https://doi.org/10.3390/plants11030445

Lyu, J., Jin, N., Meng, X., Jin, L., Wang, S., Xiao, X. and Yu, J., 2022. Exogenous silicon alleviates the adverse effects of cinnamic acid-induced autotoxicity stress on cucumber seedling growth. Frontiers in Plant Science, 13, pp. 968514. https://doi.org/10.3389/fpls.2022.968514

Martin, T.N., Leivas, U. and Barella, J.D., 2017. Foliar application of silicon on yield components of wheat crops. Caatinga, 30, pp. 578-585. http://doi.org/10.1590/1983-21252017v30n305rc

Meena, V., Dotaniya, M., Coumar, V. and Subba, A., 2014. A Case for silicon fertilization to improve crop yields in tropical soils. Proceedings of the Natural Academy of Sciences, India, Section B Biology Sciences, 84, pp. 505–518. https://doi.org/10.1007/s40011-013-0270.

Mehmood, S., Wang, X., Ahmed, W., Imtiaz, M., Ditta, A., Rizwan, M. and Li, W., 2021. Removal mechanisms of slag against potentially toxic elements in soil and plants for sustainable agriculture development: A critical review. Sustainability, 13, pp. 5255. https://doi.org/10.3390/su13095255

Minitab, LLC., 2019. Minitab (Version 19) [Computer software]. https://www.minitab.com

Pahalvi, H.N., Rafiya, L., Rashid, S., Nisar, B. and Kamili, A.N., 2021. Chemical fertilizers and their impact on soil health. Microbiota and Biofertilizers, 2: pp. 1-20. http://dx.doi.org/10.1007/978-3-030-61010-4_1.

Parra-Terraza, S., Baca-Castillo, G.A., Carrillo-González, R., Kohashi-Shibata, J., Martínez-Garza, A. and Trejo-López, C., 2004. Silicio y potencial osmótico de la solución nutritiva en el crecimiento del pepino. Terra Latinoaméricana, 33 (4), pp. 467-473. http://www.redalyc.org/articulo.oa?id=57311096011.

Pavlovic, J., Kostic, L., Bosnic, P., Kirkby, E. A. and Nikolic, M., 2021. Interactions of silicon with essential and beneficial elements in plants. Frontiers in Plant Science, 12, pp. 697592. https://doi.org/10.3389/fpls.2021.697592

Ramac, 2015. Rappaccioli McGregor S.A. Foro informativo. Agroqui?micos de Nicaragua. http://www.ramac.com.ni Fecha de consulta 3 de agosto de 2022.

Rea, R.S., Islam, M.R., Rahman, M.M., Nath, B. and Mix, K., 2022. Growth, nutrient accumulation, and drought tolerance in crop plants with silicon application: A review. Sustainability, 14(8), pp. 4525. https://doi.org/10.3390/su14084525

Shen, Z., Cheng, X., Li, X., Deng, X., Dong, X., Wang, S. and Pu, X., 2022. Effects of silicon application on leaf structure and physiological characteristics of Glycyrrhiza uralensis Fisch. and Glycyrrhiza inflata Bat. under salt treatment. BMC Plant Biology, 22, pp. 390. https://doi.org/10.1186/s12870-022-03783-7

Shivaraj, S.M., Mandlik, R., Bhat, J.A., Raturi, G., Elbaum, R., Alexander, L. and Sonah, H., 2022. Outstanding questions on the beneficial role of silicon in crop plants. Plant and Cell Physiology, 63(1), pp. 4-18. https://doi.org/10.1093/pcp/pcab145

Sun, H., Duan, Y., Qi, X., Zhang, L., Huo, H. and Gong, H., 2018. Isolation and functional characterization of CsLsi2, a cucumber silicon efflux transporter gene. Annals of Botany, 122(4), pp. 641-648. https://doi.org/10.1093/aob/mcy103

Sun, S., Yang, Z., Song, Z., Wang, N., Guo, N., Niu, J. and Chen, S., 2022. Silicon enhances plant resistance to Fusarium wilt by promoting antioxidant potential and photosynthetic capacity in cucumber (Cucumis sativus L.). Frontiers in Plant Science, 13, pp. 1011859. https://doi.org/10.3389/fpls.2022.1011859

Tayade, R., Ghimire, A., Khan, W., Lay, L., Attipoe, J. Q. and Kim, Y., 2022. Silicon as a smart fertilizer for sustainability and crop improvement. Biomolecules, 12(8), pp. 1027. https://doi.org/10.3390/biom12081027

Teo, P.T., Zakaria, S.K., Salleh, S.Z., Taib, M.A.A., Mohd Sharif, N., Abu Seman, A., and Mamat, S., 2020. Assessment of electric arc furnace (EAF) steel slag waste’s recycling options into value added green products: A review. Metals, 10, pp. 1347. https://doi.org/10.3390/met10101347

Thapa, S., Bhandari, A., Ghimire, R., Xue, Q., Kidwaro, F., Ghatrehsamani, S. and Goodwin, M., 2021. Managing micronutrients for improving soil fertility, health, and soybean yield. Sustainability, 13(21), pp. 11766. https://doi.org/10.3390/su132111766

Wu, J., Guo, J., Hu, Y. and Gong, H., 2015. Distinct physiological responses of tomato and cucumber plants in silicon-mediated alleviation of cadmium stress. Frontiers in Plant Science, 6, pp. 141391. https://doi.org/10.3389/fpls.2015.00453




URN: http://www.revista.ccba.uady.mx/urn:ISSN:1870-0462-tsaes.v27i3.53596

DOI: http://dx.doi.org/10.56369/tsaes.5359



Copyright (c) 2024 Juan José Reyes Pérez, Alejandro Palacios, luis Tarquino Llerena Ramos, Bryan Lincoln llerena Fuentes, Luis Guillermo hernández Montiel, Ramón Klever Macias Pettao, Erendira Aragón Sánchez

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.