PHYSIOLOGICAL RESPONSE OF THE AQUATIC FERN Salvinia minima UNDER EXPOSURE TO METALS SUCH Pb, Ni, Cu, Zn AND Li

Gabriela Fuentes, Daniel Leal-Alvarado, Ignacio Fuentes-Franco, Tony Hoffmann, Claudia Kutter, David Uh-Ramos, Katiana Trejo, Neyi Estrella, Gerardo Carrillo-Niquete, Eduardo Gómez-Hernández, Jorge M Santamaría

Abstract


Background: Metals can be found in nature, but they are also generated by anthropogenic activities associated with technological waste, such as batteries and electronic components. These metals, when released to the environment may contaminate and cause significant health damage. Phytoremediation is a process to de-contaminate water bodies from metals using plants. Obviously, those plants should be able not only to uptake high amounts of metals, but also, they should be able to tolerate those high concentrations in their tissues.  Salvinia minima is a fast-growing, floating aquatic fern and its ability to take up metals from the environment has been evaluated. Objective: To characterize the physiological and molecular response of Salvinia minima plants exposed to different metals. Methodology: A system was designed to expose Salvinia minima plants to different metals such as Pb, Ni, Cu, Zn and Li, for seven days at different concentrations levels and take samples every 24 h. Various parameters were evaluated including metal uptake, metal concentration in the medium, leaf appearance, PSII efficiency (Fv/Fm), photosynthesis, transpiration, stomatal conductance. Results: S. minima plants were capable to accumulate Pb (28 mg /g DW at 40 uM), Zn (10 mg/g at 80uM) Li (10 mg/g at 20mM), Cu (8 mg/g at 40 uM) and Ni (4 mg/g at 40 uM), at their roots. At short times (0-24 h) and at low concentrations (of certain metals) no significant physiological damage was observed, however, at high concentrations or longer exposure times (48-144 h), physiological damage can be observed in terms of decreased photosynthesis and PSII efficiency, transpiration and stomatal conductance. Implications: Salvinia minima plant are capable to take Pb, Ni, Cu, Zn and Li from the medium, which indicates that it is a good candidate to be used in the phytoremediation of water bodies contaminated with these metals. Conclusions: Salvinia minima plants take up and accumulate high concentrations of Pb, Ni, Cu, Zn and Li in their tissues, thus reducing the metal content of aqueous media. Even though at high concentrations those metals may affect its physiological performance, this occurs at much higher concentrations than those normally found in natural water bodies, therefore S. minima is certainly a good candidate to be used for the phytoremediation of water bodies contaminated with metals.

Keywords


Metal contamination; physiology; lithium; nickel; lead; copper; Zinc; abiotic stress.

Full Text:

PDF

References


Al-Hamdani, SH and Blair, S.L., 2004. Influence of copper on selected physiological responses in Salvinia minima and its potential use in copper remediation. American Fern Journal, 94, pp. 47-56.

Cabañas-Mendoza, M., Santamaría, J.M., Sauri-Duch, E., Escobedo-Gracia, R.M. and Andrade, J.L., 2020. Salinity affects pH and lead availability in two mangrove plant species. Environmental Research Communications, 2 (6), pp. 061004. https://doi.org/10.1088/2515-7620/ab9992.

Carrillo?Niquete, A., Andrade, J.L., Herna?ndez?Terrones, L., Cobos?Gasca, V., Fuentes, G. and Santamari?a, JM., 2022. Copper accumulation in the aquatic fern Salvinia minima causes more severe physiological stress than zinc. BioMetals, 35(5), pp. 1043-1057. https://doi.org/10.1007/s10534-022-00423-3

De Azevedo, J.P.A. and Peixoto, H.M.N., 2015. Biomass reduction of Salvinia molesta exposed to copper sulfate pentahydrate (CuSO4 5H2O). Revista Ambiente & Agua, 10, pp. 520–529. https://doi.org/10.4136/ambi-agua.1633

Domínguez, O.L., Medina, O.O. and Cabrera, García-Armenter, S., 2006. Intoxicación con litio. Anales de Medicina Interna, 23, pp. 441-445. http://scielo.isciii.es/scielo.php?script=sci_arttext&pid=S0212-71992006000900010&lng=es&tlng=es

Estrella, G.N., Mendoza, C.D., Moreno, S.R., Gonzalez, M.D., Zapata, P.O., Hernández, A.M. and Santamaría J.M., 2009. The pb-hyperaccumulator aquatic fern Salvinia minima Baker, responds to Pb2+ by increasing phytochelatins via changes in SmPCs expression and in phytochelatin synthase activity. Aquatic Toxicology, 91, pp.320-328. https://doi.org/10.1016/j.aquatox.2008.11.002

Estrella, G.N.E., 2008. Estudio del efecto de la acumulación de Pb2+ sobre la biosíntesis de fitoquelatinas y de glutatión en el helecho acuático Salvinia minima Baker. Tesis de Doctorado. Posgrado en Ciencias y Biotecnológicas de Plantas. CICY. Mérida. Yucatán México.

Fuentes, I., Espadas, F., Talavera, C., Fuentes, G. and Santamaria, J.M., 2014. Capacity of the aquatic fern (Salvinia minima Baker) to accumulate high concentrations of nickel in its tissues, and its effect on plant physiological processes. Aquatic Toxicology, 155, pp. 142-150. https://doi.org/10.1016/j.aquatox.2014.06.016

Fuentes, I.I., Espadas, G.F., Talavera, M.C., Fuentes, G. and Santamaria, J.M., 2014. Capacity of the aquatic fern (Salvinia minima Baker) to accumulate high concentrations of nickel in its tissues, and its effect on plant physiological processes. Aquatic Toxicology, 155, pp. 142-150. https://doi.org/10.1016/j.aquatox.2014.06.016

Gómez-Hernández, E., 2023. Expresión de genes transportadores y caracterización fisiológica de Salvinia minima en respuesta a litio. Mestria en Ciencias. Posgrado en Ciencias Biológicas de Plantas, CICY, Mérida, Yucatán, México, 110 p.

Hall, J.L., 2002. Cellular mechanisms for havy metal detoxification and tolerance. Journal of Experimental Botany, 53, pp. 1-11.

Hoffmann, T., Kutter, C. and Santamaría, J.M., 2004. Capacity of Salvinia minima Baker to tolerate and accumulate As and Pb. Acta Biotechnologica, 4(1), pp. 61-65. https://doi.org/10.1002/elsc.200400008.

Krämer, U. and Clemens, S., 2005. Functions and homeostasis of zinc, copper and nickel in plants. In: Molecular Biology of Metals Homeostasis and Detoxification. Springer. Alemania.

Leal, D., 2016. Caracterización de la estructura y expresión de genes con función putativa de transportadores, que se expresan en respuesta a estrés por plomo en Salvinia minima B. Posgrado en Ciencias Biológicas, CICY, Mérida, Yucatán, México.

Leal, D., Espadas-Gil, F., Sáenz-Carbonell, L., Talavera-May, C. and Santamaría, J.M., 2016. Lead accumulation reduces photosynthesis in the lead hyper-accumulator Salvinia minima Baker, by affecting cell membrane and inducing stomatal closure. Aquatic Toxicology, 171, pp. 37-47. https://doi.org.10.1016/j.aquatox.2015.12.008

Leal, D., Estrella, H., Saenz, L., Ramírez, J.H., Zapata, O. and Santamaria, J.M., 2018. Genes coding for transporters showed a rapid and sharp increase in their expression in response to lead, in the aquatic fern (Salvinia minima Baker). Ecotoxicology and Environmental Safety, 147, pp. 1056-1064. https://doi.org/10.1016/j.ecoenv.2017.09.046

Ma, Y., Rajkumar, M. and Freitas H., 2009. Improvement of plant growth and nickeluptake by nickel resistant plant growth promoting bacteria. Journal of Hazardous Materials, 166, pp. 1154- 1161.

Maine, M.A., Duarte, M.V. and Suñé, N. L., 2001. Cadmium uptake by floating macrophytes. Water research, 35, pp. 2629-2634.

Martelo, J. and Lara, B.J.A., 2012. Floating macrophytes on the wastewater treatment: a state of the art review. Ingeniería y Ciencia, 8, pp. 221-143.

Mulrooney, S.B. and Hausinger, R.P., 2003. Nickel uptake and utilization by microorganisms. FEMS Microbiology Reviews, 27, pp. 239-261.

Olguin, J., Hernandez and Ramos E.I., 2002. The effect of both different light conditions and the pH value on the capacity of Salvinia minima Baker for removing cadmium, lead and chromium. Acta Biotechnology, 22, pp. 121-131.

Pourrut B., Shahid, M., Dumat, C., Winterton, P. and Pinelli, E., 2011. Lead uptake, toxicity and detoxification in plants, In: Whitacre, D.N., Reviews of environmental contamination and toxicology, 213, Springer, New York. Pp.113-136.

Seregin, I. and Kozhevnikova, A.D., 2006. Physiological role of nickel and its toxic effects on higher plants. Russian Journal of Plant Physiology, 53, p. 257-277.

Suñe, N., Maine, M.A., Sánchez G. and Caffaratti, S., 2007. Cadmium and chromiumremoval kinetics from solution by two aquatic macrophytes. Environmental Pollution, 145, pp. 467-473.

Tapken, W., Ravet, K. and Pilon, M., 2012. Plastocyanin controls the stabilization of the thylakoid Cu-transporting P-type ATPase PAA2/HMA8 in response to low copper in Arabidopsis. The Journal of Biological Chemistry, 287, pp. 18544-18550. https://doi.org/10.1074/jbc.M111.318204

Trejo, G.K., 2012. Caracterización de la expresión diferencial de 6 genes en respuesta al plomo en Salvinia minima Baker. Tesis de Maestria. Posgrado en Ciencias Biológicas. CICY. Mérida Yucatán México.

Uh, J.D., 2008. Identificación y aislamiento de genes expresados diferencialmente en Salvinia minima en respuesta a Pb. Posgrado en Ciencias y Biotecnología de Plantas, CICY, Mérida, Yucatán, México, 145 p.

USGS., 2021a. Commodity summaries: copper, vol 73. U.S. Department of the Interior Geological Survey, Reston, pp 2020–2021.

USGS., 2021b. Commodity summaries: zinc, vol 703. U.S. Department of the Interior Geological Survey, Reston, pp 2020–2021.




URN: http://www.revista.ccba.uady.mx/urn:ISSN:1870-0462-tsaes.v28i1.53464

DOI: http://dx.doi.org/10.56369/tsaes.5346



Copyright (c) 2025 Gabriela Fuentes, Daniel Leal-Alvarado, Ignacio Fuentes-Franco, Tony Hoffmann, Claudia Kutter, David Uh-Ramos, Katiana Trejo, Neyi Estrella, Gerardo Carrillo-Niquete, Eduardo Gómez-Hernández, Jorge M Santamaría

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.