TREE SPECIES AND MACROFAUNA INFLUENCE ON SOIL AGGREGATES AND CARBON IN EASTERN DEMOCRATIC REPUBLIC OF CONGO
Abstract
Keywords
Full Text:
PDFReferences
Anderson, J. and Ingram, J., 1993. Tropical Soil Biology and Fertility: A Handbook of Methods, 2nd ed., C.A.B. International, Wallingford, UK, 2, pp. 221. http://doi.org/10.1017/S0014479700024832
Anderson, T.H. and Domsch, K.H., 1989. Ratios of microbial biomass carbon to total organic carbon in arable soils. Soil Biology Biochemistry, 21, pp. 471-479. http://doi.org/10.1016/0038-0717(89)90117-X.
Ayuke, F.O., Brussaard, L., Vanlauwe, B., Six, J., Lelei, D.K., Kibunja, C.N. and Pulleman, M.M., 2011. Soil fertility management: Impacts on soil macrofauna, soil aggregation and soil organic matter allocation. Applied Soil Ecology, 48 (1), pp. 53–62. http://doi.org/10.1016/j.apsoil.2011.02.001
Barrios, E., Sileshi, G.W. and Shepherd, K., 2011. Agroforestry and soil health: Linking trees, soil biota and ecosystem services. In: D.H. Wall, eds. The Oxford Handbook of Soil Ecology and Ecosystem Services. Oxford University Press, Oxford, UK, pp. 315-330. http://doi.org/10.1093/acprof:oso/9780199 575923.003.0028
Bates, D., Maechler, M., Bolker, B. and Walker, S., 2015. Fitting linear mixed-effects models using lme4. Journal of Statistical Software, 67, pp. 1–48. http://doi.org/10.18637/jss.v067.i01
Bronick, C.J. and Lal, R., 2005. Soil structure and management: A review. Geoderma, 124 (1-2), pp. 3-22. http://doi.org/10.1016/j.geoderma.2004.03.005
Catherine, L.P. and Steven, L.S., 2001. Inventory and bioindicator sampling: Testing pitfall and Winkler methods with ants in a South African savanna. Journal of Insect Conservation, 5, pp. 27–36. http://doi.org/10.1023/A:1011311418962
Clever, B., João, C. M.S., Rattan, L., Ademir, O.F., Julio, C.F. and Débora, M. B. P. M. (2023). Preservation of labile organic compounds is the pathway for carbon storage in a 23-year continuous no-till system on a Ferralsol in southern Brazil. Geoderma Regional, 33, p. 643. http://doi.org/10.1016/j.geodrs.2023.e00643
Coleman, D.C., Crossley, D.A. and Hendrix, P.F., 2004. Fundamentals of Soil Ecology. Elsevier Academic Press, second ed., 408. http://doi.org/10.1016/j.agsy.2006.10.005
Conant, R.T., Six, J. and Paustian, K., 2004. Land-use effects on soil carbon fractions in the southeastern United States, II: Change in soils carbon fractions along a forest to pasture chronosequence. Biology and Fertility of Soils, 40 (3), pp. 194-200. http://doi.org/10.1007/s00374-004-0754-2
Desjardins, T., Charpentier, F., Pashanasi, B., Pando-Bahuon, A., Lavelle, P. and Mariotti, A. (2003). Effects of earthworm inoculation on soil organic matter dynamics of a cultivated ultisol. Pedobiologia, 47, pp. 835-841.
Dhaliwal, J., Kukal, S.S. and Sandeep, S., 2017. Distribution and Stability of Soil Aggregates under Tree-based Cropping Systems in Sub-mountaneous Zone of Punjab, India. Journal of the Indian Society of Soil Science, 65 (3), pp. 248-255. http://doi.org/10.5958/0974-0228.2017.00028.7
Du, Z., Ren, T., Hu, C. and Zhang, Q., 2015. Transition from intensive tillage to no-till enhances carbon sequestration in microaggregates of surface soil in the North China Plain. Soil and Tillage Research, 146, pp. 26-31. http://doi.org/10.1016/j.still.2014.08.012
Elliott, E.T., 1986. Aggregate structure and carbon, nitrogen and phosphorus in native and cultivated soils. Soil Science Soc. American Journal, 50 (3), pp. 627-633. http://doi.org/10.2136/sssaj1986.03615995005000030017x
Elliott, E.T. and Coleman, D.C., 1988. Let the soil work for us. Ecological Bulletins, 39, pp. 23-32. http://www.certifiedorganic.bc.ca/rcbtoa/training/soil-article.html
Emilie, S.D. and Subira, B. (2015). Rapport des journées de formation sur l’agroforesterie au Nord-Kivu. The World Agroforestry Centre.
Emilie, S.D., Subira, B. and Fergus, S. (2015). Guide technique d’agroforesterie pour la sélection et la gestion des arbres au Nord-Kivu—République Démocratique du Congo RDC. The World Agroforestry Centre.
Franzluebbers, A.J., Wright, S.F. and Stuedeman, J.A., 2000. Soil aggregation and Glomalin under pastures in the southern piedmont USA. Soil Science Society American Journal, 64, pp. 1018-1026. http://doi.org/10.2136/sssaj2000.6431018x
Geert, L., Françoise, A., Mone Van, G. and Thierry, L., 2013. ECOmakala: Meeting energy needs, fighting poverty and protecting the forests of the Virunga National Park in North Kivu DRC. WWF-Communauté francophone, pp. 35
Haynes, R.J., 2005. Labile organic matter fractions as central components of the quality of agricultural soils: An overview. Advances in Agronomy, 85, pp. 221-268. http://doi.org/10.1016/S0065-2113(04)85005-3
He, J., H., M., H. and Xu, J., 2015. Participatory selection of tree species for agroforestry on sloping land in North Korea. Mountain Research and Development, 35 (4), pp. 318-327. http://doi.org/10.1659/MRD-JOURNAL-D-15-00046.1
Hermine, D., Jingguo, W. and Ling, Q., 2010. Soil Aggregate and Organic Carbon Stability under Different Land Uses in the North China Plain. Communications in Soil Science and Plant Analysis, 41 (9), pp. 1144-1157. http://doi.org/10.1080/00103621003711297
Hopp, P.W., Edilson, C., Richard, O. and Martina, R.N., 2011. Evaluating leaf litter beetle data sampled by Winkler extraction from Atlantic forest sites in southern Brazil. Revista Brasileira de Entomologia, 55 (2), pp. 253–266. http://doi.org/10.1590/S0085-56262011000200017
Jungerius, P.D., van den Ancker, J.A.M. and Mücher, H.J., 1999. The contribution of termites to the microgranular structure of soils on the Uasin Gishu Plateau, Kenya. Catena, 34 (3-4), pp. 349-363. http://doi.org/10.1016/S0341-8162(98)00106-4
Jurisandhya, B. and Sharma, Y.K. (2022). Comparative studies on labile carbon fractions under different land use systems in Nagaland. The Pharma Innovation Journal, 11 (8), pp. 422-425.
Kamau, S., Edmundo, B., Nancy, K., Fredrick, A. and Johannes, L., 2020. Dominant tree species and earthworms affect soil aggregation and carbon content along a soil degradation gradient in an agricultural landscape. Geoderma, 359, pp. 1-12. http://doi.org/10.1016/j.geoderma.2019.113983
Kataka, J.L., Onwonga, R., Karanja, N.K. and Kamau, S. (2023). Soil macrofauna abundance and diversity under trees woodlots in Eastern Democratic Republic of Congo. Tropical and Subtropical Agroecosystems, 26 (3), pp. 1–15. http://doi.org/10.56369/tsaes.4548
Katembo, S.S., 2017. Contribution de la foresterie urbaine dans la séquestration du carbone: Cas de la ville de Beni [Monography]. Université Catholique du Graben.
Lawal, H.M., 2013. Soil aggregate fractions and organic carbon pools as influenced by tree diversity in forest reserve of semi arid Nigeria. Tropical and Subtropical Agroecosystems, 16 (3), pp. 515-523.
Mahesh, K.S., Sunil, S. and Nandita, G. (2017a). Impact of land use change on soil aggregate dynamics in the dry tropics. Restoration Ecology, 25 (6), pp. 962-971. http://doi.org/10.1111/rec.12523.
Mahesh, K.S., Sunil, S. and Nandita, G., 2017. Soil aggregates: Formation, distribution and management. Nova Science Publishers, pp. 165–189.
Mboukou-Kimbatsa, I.M.C. and Bernhard-Reversat, F., 2001. Effect of exotic tree plantations on invertebrate soil macrofauna. In: F.R. Bernhard, ed. Effect of Exotic Tree Plantations on Plant Diversity and Biological Soil Fertility in the Congo Savanna: With Special Reference to Eucalyptus, Center for International Forestry Research, pp. 49-55. http://doi.org/10.17528/cifor/001008
Michael, B.M., Kaitlin, U.C. and Thomas, O.C., 2017. Effectiveness of Winkler Litter Extraction and Pitfall Traps in Sampling Ant Communities and Functional Groups in a Temperate Forest. Environmental Entomology, 46 (3), pp. 470-479. http://doi.org/10.1093/ee/nvx061
Muvunga, K.G., 2019. Reduction of aflatoxin contamination of maize flour in three major cities (Beni, Butembo and Goma) of North-Kivu of D. R. Congo by employing nixtamalization preparation for consumption [Master thesis]. University of Nairobi.
Morlue, B., Kamau, S., Ayuke, F. and Kironchi, G., 2021. Land use change, but not soil macrofauna, affects soil aggregates and aggregate-associated C content in central highlands of Kenya. Journal of Soils and Sediments, 21, pp. 1360–1370. http://doi.org/10.1007/s11368-021-02895-1
Nabunya, M., 2017. Contribution of agroforestry practices to reducing farmers’ vulnerability to climate variability in Rakai district, Uganda. Makerere University, College of Agriculture and environmental sciences
Oliveira, F.E.R., Oliveira, J.M. and Xavier, F.A.S., 2016. Changes in Soil Organic Carbon Fractions in Response to Cover Crops in an Orange Orchard. Revista Brasileira de Ciência do Solo, 40, pp. 1-12. http://doi.org/10.1590/18069657rbcs20150105
Powlson, D.S., Gregory, P.J., Whalley, W.R., Quinton, J.N., Hopkins, D.W., Whitmore, A.P., Hirsch, P.R. and Goulding, K. W. T. (2011). Soil management in relation to sustainable agriculture and ecosystem services. Food Policy, 36, pp. 72-87. http://doi.org/10.1016/j.foodpol.2010.11.025.
R Core Team, 2015. R: a Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/
Ruiz, N., Lavelle, P. and Jiménez, J., 2008. Soil macrofauna field manual: Technical level. Food and Agriculture Organisation of the United Nations, Rome, pp. 101
Six, J., Bossuyt, H., Degryze, S. and Denef, K., 2004. A history of research on the link between (micro)aggregates, soil biota, and soil organic matter dynamics. Soil Tillage Research, 79 (1), pp. 7-31. http://doi.org/10.1016/j.still.2004.03.008
Six, J., Conant, R.T., Paul, E.A. and Paustian, K., 2002. Stabilization mechanism of soil organic matter: Implication for C saturation of soils. Plant and Soil, 241 (2), pp. 155-176. http://doi.org/10.1023/A:1016125726789
Six, J., Elliott, E. and Paustian, K., 2000. Soil macroaggregate turnover and microaggregate formation: A mechanism for C sequestration under no-tillage agriculture. Soil Biology and Biochemistry, 32 (14), pp. 2099-2103. http://doi.org/10.1016/S0038-0717(00)00179-6
Somasundaram, J., Chaudhary, R.S., Awanish Kumar, D., Biswas, A.K., Sinha, N.K., Mohanty, M., Hati, K.M., Jha, P., Sankar, M., Patra, A.K., Dalal, R. and Chaudhari, S.K., 2018. Effect of contrasting tillage and cropping systems on soil aggregation, carbon pools and aggregate-associated carbon in rainfed Vertisols. European Journal of Soil Science, 69 (5), pp. 879-891. http://doi.org/10.1111/ejss.12692
Sylvain, C., Bernard, G.B., Robert, O., Bodovololona, R. and Eric, B. (2007). Earthworm activity affects soil aggregation and organic matter dynamics according to the quality and localization of crop residues – An experimental study (Madagascar). Soil Biology and Biochemistry, 39 (8), pp. 2119-2128. http://hal.science/cirad – 00762200.
Sys, C., Van Wambeke, A., Frankart, R., Gilson, P., Jongen, P., Pecrot, A., Berce, J.M. and Jamagne, M. (1961). La cartographie des sols au Congo: Ses principes et ses méthodes, 66, pp. 262.
Tisdall, J.M. and Oades, J.M., 1982. Organic matter and water-stable aggregates in soils. Journal of Soil Science, 33 (2), pp. 141-163. http://doi.org/10.1111/j.1365-2389.1982.tb01755.x
Trujilo, W., Amezquita, E., Fisher, M.J. and Lal, R., 1997. Soil organic carbon dynamics and land use in the Colombian Savannas I: Aggregate size distribution. In: R. Lal, J.M. Kimble, F.R. Follett and B.A. Stewart, ed. Soil Processes and the Carbon Cycle, CRC Press, Boca Raton, pp. 267–280. http://doi.org/10.1201/9780203739273
Unger, P.W., 1997. Management induced aggregation and organic carbon concentration in the surface layer of a Torrertic paleustoll. Soil Tillage Research, 42 (3), pp. 185-208. http://doi.org/10.1016/S0167-1987(97)00003-2
Vladimir, ?., Maja, M., Milivoj, B., Ljiljana, N. and Srdan, Š. (2013). Effects of land use conversion on soil aggregate stability and organic carbon in different soils. Agrociencia, 47 (6), pp. 539–552.
Vyakuno, K.E. (2006). Pression anthropique et aménagement rationnel des hautes terres de Lubero en R.D.C. : Rapports entre société et milieu physique dans une montagne équatoriale. Touluse 2.
Xavier, F.A.S., Maia, S.M.F., Oliveira, T.S. and Mendonça, E.S., 2009. Soil organic carbon and nitrogen stocks under tropical organic and conventional cropping systems in Northeastern Brazil. Communications in Soil Science and Plant Analysis, 40, pp. 2975-2994. http://doi.org/10.1080/00103620903261304
Yoseph, T.D., Witoon, P., Amila, B., Birru, Y., Tesfaye, W., Hans, G. and Douglas, L.G. (2017). Changes in land use alter soil quality and aggregate stability in the highlands of northern Ethiopia. Scientific Reports, 7 (1), pp. 1-13. http://doi.org/10.1038/s41598-017-14128-y
Yusheng, Y., Jianfen, G., Guangshui, C., Yunfeng, Y., Ren, G. and Chengfang, L., 2009. Effects of forest conversion on soil labile organic carbon fractions and aggregate stability in subtropical China. Plant and Soil, 323 (1), pp. 153-162. http://doi.org/10.1007/s11104-009-9921-4
Zeng, D.H., Mao, R., Chang, S.X., Li, L.J. and Yang, D. (2010). Carbon mineralization of tree leaf litter and crop residues from poplar-based agroforestry systems in Northeast China: A laboratory study. Applied Soil Ecology, 44 (2), http://doi.org/10.1016/j.apsoil.2009.11.002
URN: http://www.revista.ccba.uady.mx/urn:ISSN:1870-0462-tsaes.v27i3.53307
DOI: http://dx.doi.org/10.56369/tsaes.5330
Copyright (c) 2024 Jean-Leon Kataka, Richard Onwonga, Nancy Karanja, Solomon Kamau
This work is licensed under a Creative Commons Attribution 4.0 International License.