STUDY OF THE MORPHOLOGY AND PHYSIOLOGY OF Arabidopsis thaliana COLUMBIA ECOTYPE DURING INDIVIDUAL AND COMBINED STRESS: DROUGHT AND HEAT
Abstract
Keywords
Full Text:
PDFReferences
Arabidopsis Genome Initiative., 2000. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature, 408(6814), pp.796-815. https://doi.org/10.1038/35048692
Bajji, M., Kinet, J.-M. and Lutts, S., 2002. The use of the electrolyte leakage method for assessing cell membrane stability as a water stress tolerance test in durum wheat. Plant Growth Regulation, 36, pp.61–70. https://doi.org/10.1023/A:1014732714549
Cirillo, V., D'Amelia, V., Esposito, M., Amitrano, C., Carillo, P., Carputo, D. and Maggio, A., 2021. Anthocyanins are key regulators of drought stress tolerance in tobacco. Biology (Basel), 10, Article 139. https://doi.org/10.3390/biology10020139
de Ollas, C., Segarra-Medina, C., González-Guzmán, M., Puertolas, J. and Gómez Cadenas, A., 2019. A customizable method to characterize Arabidopsis thaliana transpiration under drought conditions. Plant Methods, 15, p.89. https://doi.org/10.1186/s13007-019-0474-0
Demidchik, V., Straltsova, D., Medvedev, S. S., Pozhvanov, G. A., Sokolik, A. and Yurin, V., 2014. Stress-induced electrolyte leakage: The role of K?-permeable channels and involvement in programmed cell death and metabolic adjustment. Journal of Experimental Botany, 65(5), pp. 1259–1270. https://doi.org/10.1093/jxb/eru004
Estrella, H., Ramírez, A.G., Fuentes, G., Peraza, S., Martínez, O., Góngora, E. and Santamaría, J.M., 2021. Transcriptomic analysis reveals key transcription factors associated with drought tolerance in a wild papaya (Carica papaya) genotype. PLoS ONE, 16(1), p. e0245855. https://doi.org/10.1371/journal.pone.0245855
Fulgione, A. and Hancock, A.M., 2018. Archaic lineages broaden our view on the history of Arabidopsis thaliana. New Phytologist, 219(4), 1194–1198. https://doi.org/10.1111/nph.15244
González, M.S., Perales, V.H. and Salcedo, A.M.O., 2008. La fluorescencia de la clorofila a como herramienta en la investigación de efectos tóxicos en el aparato fotosintético de plantas y algas. Revista de Educación Bioquímica, 27(4), pp. 119-129.
Juenger, T.E. and Verslues, P.E., 2023. Time for a drought experiment: Do you know your plants’ water status? The Plant Cell, 35(1), 10–23. https://doi.org/10.1093/plcell/koac324
Kalaji, H., Jajoo, A., Oukarroum, A., Brestic, M., Zivcak, M., Samborska, I., Cetner, M., Lukasik, I., Goltsev, V. and Ladle, R., 2016. Chlorophyll a fluorescence as a tool to monitor physiological status of plants under abiotic stress conditions. Acta Physiologiae Plantarum, 38(4), Article 102. https://doi.org/10.1007/s11738-016-2113-y
Kijne, J., 2006. Abiotic stress and water scarcity: Identifying and resolving conflicts from plant level to global level. Field Crops Research, 97(1), pp.3-18. https://doi.org/10.1016/j.fcr.2005.08.011
Krämer, U., 2015. The natural history of model organisms: Planting molecular functions in an ecological context with Arabidopsis thaliana. Ecology, Plant Biology, 4, Article e06100. https://doi.org/10.7554/eLife.06100
Lasky, J.R., Des Marais, D.L., McKay, J.K., Richards, J.H., Juenger, T.E. and Keitt, T.H., 2012. Characterizing genomic variation of Arabidopsis thaliana: The roles of geography and climate. Molecular Ecology, 21(22), pp. 5512–5529. https://doi.org/10.1111/j.1365-294x.2012.05709.x
Li, Q., Wang, M. and Fang, L., 2021. BASIC PENTACYSTEINE2 negatively regulates osmotic stress tolerance by modulating LEA4-5 expression in Arabidopsis thaliana. Plant Physiology and Biochemistry, 168, pp.373–380. https://doi.org/10.1016/j.plaphy.2021.10.030
Lloyd, J. and Farquhar, G., 2008. Effects of rising temperatures and [CO2] on the physiology of tropical forest trees. Philosophical Transactions of the Royal Society B: Biological Sciences, 363(1498), pp.1811-1817. https://doi.org/10.1098/rstb.2007.0032
Malhi, G. S., Kaur, M. and Kaushik, P., 2021. Impact of climate change on agriculture and its mitigation strategies: A review. Sustainability, 13(3), p.1318. https://doi.org/10.3390/su13031318
Mathur, S., Jajoo, A., Mehta, P. and Bharti, S., 2010. Analysis of elevated temperature-induced inhibition of photosystem II using chlorophyll a fluorescence induction kinetics in wheat leaves (Triticum aestivum. Plant Biology, 13(1), pp.1–6. https://doi.org/10.1111/j.1438-8677.2009.00319.x
Mittler, R., 2006. Abiotic stress, the field environment and stress combination. Trends in Plant Science, 11(1), pp.15-19. https://doi.org/10.1016/j.tplants.2005.11.002
Opoku, V.A., Adu, M.O., Asare, P.A., Asante, J., Hygienus, G. and Andersen, M.N., 2024. Rapid and low-cost screening for single and combined effects of drought and heat stress on the morpho-physiological traits of African eggplant (Solanum aethiopicum) germplasm. PLoS ONE, 19(1), p.e0295512. https://doi.org/10.1371/journal.pone.0295512
Østergaard, L., Yanofsky, M.F., 2004. Establishing gene function by mutagenesis in Arabidopsis thaliana. The Plant Journal, 39, pp.682-696. https://doi.org/10.1111/j.1365-313X.2004.02149.x
Passardi, F., Dobias, J., Valério, L., Guimil, S., Penel, C. and Dunand, C., 2007. Morphological and physiological traits of three major Arabidopsis thaliana accessions. Journal of Plant Physiology, 164(8), pp.980-992. https://doi.org/10.1016/j.jplph.2006.06.008
Pirasteh, H., Saed, A., Pakniyat, H. and Pessarakli, M., 2016. Stomatal responses to drought stress. In Water Stress and Crop Plants: A Sustainable Approach (pp. 24-40. Wiley Blackwell.
Pleban, J.R., Guadagno, C.R., Mackay, D.S., Weinig, C. and Ewers, B.E., 2020. Rapid chlorophyll a fluorescence light response curves mechanistically inform photosynthesis modeling. Plant Physiology, 183(2), pp. 602–619. https://doi.org/10.1104/pp.19.00375
Rico-Cambron, T.Y., Bello-Bello, E., Martínez, O. and Herrera Estrella, L., 2023. A non-invasive method to predict drought survival in Arabidopsis using quantum yield under light conditions. Plant Methods, 19, p.127. https://doi.org/10.1186/s13007-023-01107-w
Rizhsky, L., Liang, H., Shuman, J., Shulaev, V., Davletova, S. and Mittler, R., 2004. When defense pathways collide: The response of Arabidopsis to a combination of drought and heat stress. Plant Physiology, 134(4), pp.1683–1696. https://doi.org/10.1104/pp.103.033431
Sperdouli, I. and Moustakas, M., 2012. Interaction of proline, sugars, and anthocyanins during photosynthetic acclimation of Arabidopsis thaliana to drought stress. Journal of Plant Physiology, 169, pp.576–585. https://doi.org/10.1016/j.jplph.2012.01.003
Živ?ák, M., Bresti?, M., Olšovská, K. and Slamka, P., 2008. Performance index as a sensitive indicator of water stress in Triticum aestivum L. Plant, Soil and Environment, 54(4), pp.133-139. https://doi.org/10.17221/392-PSE
URN: http://www.revista.ccba.uady.mx/urn:ISSN:1870-0462-tsaes.v28i1.52802
DOI: http://dx.doi.org/10.56369/tsaes.5280
Copyright (c) 2025 Jorge M. Santamaria

This work is licensed under a Creative Commons Attribution 4.0 International License.