NUTRITIONAL VALUE AND IN VITRO DRY MATTER DEGRADABILITY IN MEXICAN SUNFLOWER: Tithonia diversifolia Helms (Gray)

Ximena Hernández-Arboleda, Sanín Ortiz-Grisales, Walter Fernando Vivas-Arturo, Yulien Fernández-Romay, Orestes La O-León, Adibe Luiz-Abdalla, Simón Pérez-Márquez, José Leonardo Ledea Rodríguez

Abstract


Background: Tithonia diversifolia Helms (Gray), is a robust shrubby forage plant with high integral biomass yield (stem and leaves); susceptible to heliophany and conditioning of bromatological characteristics, nutritional value, and modification of the rumen environment is due to genetic variability between genotypes. Objective: To evaluate the macromolar quality of the biomass of introductions T. diversifolia Helms (Gray) established in two locations, and the nutritional value, gas production and in vitro rumen environment promoted by the whole plant biomass established in Ecuador. Methodology: The chemical composition of the full plant (PITD) was considered based on Dry Matter (DM), Organic Matter (OM), Mineral composition (MC), Crude Protein (CP), neutral Detergent Fiber (NDF), Acid Detergent Fiber (ADF). In vitro gas production was evaluated according to Ankom Technology, considering Tiffon 85 there (Cynodon dactylon) at control, quantified or ammoniacal nitrogen (N-NH3), short-chain fatty acids (SCFA) and pH. The experiment was developed in a completely randomized design in factorial arrangement with three repetitions for the variable chemical composition, and the in vitro digestibility of the date processed through a random complete block design with six repetitions, in the ruminal ambient and production SCFA was analyzed through a completely randomized block design with three repetitions. Results: There were variable responses in the DM content for the effect of interaction P <0.01, and higher mineral content in El Carmen, Ecuador for introduction 13.5, with respect to the rest of the cultivars in both locations. NDF was significantly expressed (p<0.001) in variety 1.2 that grew in Candelaria, Ecuador. For the rest of the variables, no differences were recorded (P>0.05). The gas production of the introductions, except for 1.2, was similar to that produced by the control (Tifton 85), however, in the degradability of the OM, net gas production (Net GP) of DM and OM, stood out. introduction 1.2 compared to the control (P<0.01) and the rest of the introductions. The net GP of NDF exceeded 1.2 (p<0.02) than the control, also quantitatively to produce Acetic and Propionic Fatty Acid. Implications: The introductions of T. diversifolia Helms Gray based on the results obtained preserve macromolar characteristics, gas production and SCVFA production (short chain volatile fatty acids) in contrasting ecosystems such as Valle del Cauca, Colombia and Manabi in Ecuador. Conclusions: The introductions of T. diversifolia Helms Gray, maintain a good protein composition, produce low methane contents, have high performance in the fermentation of organic matter and the cell wall, which suggests its future use as a complement to the ration in conditions in conditions Edaphoclimatic of the province of Manabi.

Keywords


Forage quality; ruminant nutrition; Ecuador.

Full Text:

PDF

References


AOAC International, 2016. Official methods of analysis of AOAC International. Association of Official Analysis Chemists International.

Ascencio-Rojas, L., Valles-de la Mora, B., Castillo-Gallegos, E. and Ibrahim, M., 2019. In situ ruminal degradation and effective degradation of foliage from six tree species during dry and rainy seasons in Veracruz, Mexico. Agroforestry Systems, 93(1), pp. 123-133. https://doi.org/10.1007/s10457-018-0184-z

Bartlett, M.S., 1937. Properties of sufficiency and statiscal test. Proceedings of the Royal Society of London. Series A-Mathematical and Physical Sciences, 160(901), pp.268–282. https://doi.org/10.1098/rspa.1937.0109

Blümmel, M. and Ørskov, E.R., 1993. Comparison of in vitro gas production and nylon bag degradability of roughages in predicting feed intake in cattle. Animal Feed Science and Technology, 40(2–3), pp. 109-119. https://doi.org/10.1016/0377-8401(93)90150-I

Bueno, C.A. and Lesmes, N., 2008. Utilización de microorganismos eficientes en levante de novillas brahmán bajo pastoreo semi-intensivo suplementado en la región de Palmira, Valle del Cauca. Revista Ciencia Animal, 1(3), pp.17–25. https://ciencia.lasalle.edu.co/ca/vol1/iss1/3/

Cadena-Villegas, S., Martínez-Maldonado, H.G., Sosa-Montes, E., Mendoza-Pedroza, S.I., Salinas-Rios, T., Flores-Santiago, E.J. and Fuente, J.I.A. de la, 2020. Use of Tithonia diversifolia (hemsl.) A. Gray in the diet of growing lambs. Arquivo Brasileiro de Medicina Veterinária e Zootecnia, 72(5). https://doi.org/10.1590/1678-4162-11923

Calsavara, L.H.F., Ribeiro, R.S., Silveira, S.R., Delarota, G., Freitas, D.S., Sacramento, J.P., Paciullo, D.S.C. and Maurício, R.M., 2016. Potencial forrageiro da Tithonia diversifolia para alimentação de ruminantes. Livestock Research for Rural Development, 28(2). http://www.alice.cnptia.embrapa.br/alice/handle/doc/1053056

Canul-Solis, J., Campos-Navarrete, M., Piñeiro-Vázquez, A., Casanova-Lugo, F., Barros-Rodríguez, M., Chay-Canul, A., Cárdenas-Medina, J. and Castillo-Sánchez, L., 2020. Mitigation of rumen methane emissions with foliage and pods of tropical trees. Animals, https://doi.org/10.3390/ani10050843

Cuartas, C., Naranjo, J., Tarazona, A., Barahona, R., Rivera, J., Arenas, F. and Correa, G., 2015. Valor nutritivo y cinética de fermentación in vitro de mezclas forrajeras utilizadas en sistemas silvopastoriles intensivos Nutritional value and kinetics of in vitro fermentation of forage mixtures used in intensive silvopastoral systems. Zootecnia Tropical, [online] 33(4), pp.295–306. Available at: http://www.scielo.org.ve/pdf/zt/v33n4/art02.pdf

Dhanoa, M.S., 1988. On the analysis of dacron bag data for low degradability feeds. Grass and Forage Science, 43(4). https://doi.org/10.1111/j.1365-2494.1988.tb01901.x

Dong, Y., Bae, H.D., McAllister, T.A., Mathison, G.W. and Cheng, K.J., 1999. Effects of exogenous fibrolytic enzymes, ?-bromoethanesulfonate and monensin on fermentation in a rumen simulation (RUSITEC) system. Canadian Journal of Animal Science, 79(4), pp. 491-498. https://doi.org/10.4141/A99-024

ESPAC-INEC, 2019. Encuesta de Superficie yProducción Agropecuaria Continua ESPAC,2019. [online] Quito. Available at:https://www.ecuadorencifras.gob.ec/documentos/web-inec/Estadisticas_agropecuarias/espac/espac-2019/Boletin Tecnico ESPAC_2019.pdf

Falconer, D.S., 1983. Problems on quantitative genetics. London, UK: Longman.

France, J., Dhanoa, M.S., Theodorou, M.K., Lister, S.J., Davies, D.R. and Isac, D., 1993. A model to interpret gas accumulation profiles associated with in vitro degradation of ruminant feeds. Journal of Theoretical Biology, 163(1), pp. 99-111. https://doi.org/10.1006/jtbi.1993.1109

Galindo Blanco, J.L., La O León, O., Ruiz Vázquez, T., González Vásquez, A. and Narvaez Campana, W., 2019. Efecto de diferentes materiales vegetales de Tithonia diversifolia (Hemsl.) Gray en la población de metanógenos y protozoos del rumen. UNESUM-Ciencias. Revista Científica Multidisciplinaria. ISSN 2602-8166, 2(3), pp. 1-10. https://doi.org/10.47230/unesum-ciencias.v2.n3.2018.98

Galindo, J., González, N., Scull, I., Marrero, Y., Moreira, O. and Ruiz, T.E., 2017. Tithonia diversifolia (Hemsl.) A. Gray and its effect on the rumen population and microbial ecology. Mulberry, moringa and tithonia in animal feeds and others. In: L.L. Savon-Valdez, O. Gutiérrez-Borroto and G. Febles-Perez, eds. Mulberry, moringa and tithonia in animal feed, and other uses . Results in Latin America and the Caribbean. Mayabeque: Food and Agriculture Organization of the United Nations (FAO). pp.251–258.

Gallego-Castro, L.A., Machena-Ledesma, L. and Angulo-Arizala, J., 2014. Potencial forrajero de Tithonia diversifolia Hemsl. A Gray en la producción de vacas lecheras. Agronomía Mesoamericana, 25(2), pp. 393-403 https://doi.org/10.15517/am.v25i2.15454

Gama, R.M. da, Guimarães, M., de Abreu, L.C. and Armando-Junior, J., 2014. Phytochemical screening and antioxidant activity of ethanol extract of Tithonia diversifolia (Hemsl) A. Gray dry flowers. Asian Pacific Journal of Tropical Biomedicine, 4(9), pp. 740-742. https://doi.org/10.12980/APJTB.4.2014APJTB-2014-0055

González, M.A.H., Mogollón, O.L.M., Saavedra, Y.M.G., Castaño, V.A.H. and Mora-Delgado, J., 2020. In vitro methane production from silages based on Cenchrus purpureus mixed with Tithonia diversifolia in different proportions. Acta Scientiarum - Animal Sciences, 43(1). https://doi.org/10.4025/actascianimsci.v43i1.51322

González-Castillo, J.C., Hahn von-Hessberg, C.M. and Narváez-Solarte, W., 2014. Características botánicas de Tithonia diversifolia (Asterales: Asteraceae) y su uso en la alimentación animal. Boletin Cientifico del Centro de Museos, 18(2), pp. 777-780.

Hassen, A., Kelkay Tessema, Z. and Tolera, A., 2017. Seasonal variations in chemical composition, in vitro digestibility and ruminal degradation of browse species in the Rift Valley of Ethiopia. Livestock Research for Rural Development, 29(6). http://www.lrrd.org/lrrd29/6/tess29112.html

Hernández, N.L., Vázquez, E.G., Caratachea, A.J., Razo, G.S., Burgos, A.A. and Valladares, A.G., 2023. Metabolitos secundarios presentes en nuevos árboles forrajeros de importancia para la ganadería de la selva baja caducifolia del estado de Michoacán, México. Brazilian Journal of Animal and Environmental Research, 6(3), pp. 2145-2154. https://doi.org/10.34188/bjaerv6n3-013

Herrera, R. S., Verdecia, D. M., Ramírez, J. L., García, M. and Cruz, Ana M.. 2017. Relación entre algunos factores climáticos y la composición química de Tithonia diversifolia. Cuban Journal of Agricultural Science, 51(2), 271-279. http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S2079-34802017000200013&lng=es&tlng=es

Holdridge, L.R., 1967. Life zone ecology. re. ed, pp. 206. Ref. 94 rfs

Holguín Castaño, V., Ortíz Grisalez, S., Velasco Navia, A. and Mora Delgado, J., 2015. Evaluación multicriterio de 44 introducciones de Tithonia diversifolia (Hemsl.) Gray en Candelaria, Valle del Cauca. Revista de la Facultad de Medicina Veterinaria y de Zootecnia, 62(2), pp. 57-72. https://doi.org/10.15446/rfmvz.v62n2.51995

Hoover, W.H. and Stokes, S.R., 1991. Balancing Carbohydrates and Proteins for Optimum Rumen Microbial Yield. Journal of Dairy Science, 74(10), 3630-3644. https://doi.org/10.3168/jds.S0022-0302(91)78553-6

Jaimes, L.J., Giraldo, A.M. and Correa, H.J., 2018. De Parmentier a Van Soest y más allá : un análisis histórico del concepto y métodos de determinación de la fibra en alimentos para rumiantes. Livestock Research for Rural Development, 30(7). http://www.lrrd.org/lrrd30/7/hjco30126.html 9/9

Jamarun, N., Pazla, R., Zain, M. and Arief, 2019. Comparison of in vitro digestibility and rumen fluid characteristics between the tithonia (Tithonia diversifolia) with elephant grass (Pennisetum purpureum). In: IOP Conference Series: Earth and Environmental Science. 287(1), p. 012019.https://doi.org/10.1088/1755-1315/287/1/012019

Jamarun, N., Pazla, R., Zain, M. and Arief, A., 2020. Milk quality of Etawa crossbred dairy goat fed combination of fermented oil palm fronds, Tithonia (Tithonia diversifolia) and Elephant Grass (Pennisetum Purpureum). In: Journal of Physics: Conference Series. 1469, p. 012004.https://doi.org/10.1088/1742-6596/1469/1/012004

Jamarun, N., Zain, M., Arief and Pazla, R., 2017. Populations of rumen microbes and the in vitro digestibility of fermented oil palm fronds in combination with tithonia (Tithonia diversifolia) and elephant grass (Pennisetum purpureum). Pakistan Journal of Nutrition, 17(1), pp. 39-45. https://doi.org/10.3923/pjn.2018.39.45

Kato-Noguchi, H., 2020. Involvement of allelopathy in the invasive potential of Tithonia diversifolia. Plants9(6), p. 766. https://doi.org/10.3390/plants9060766

Ku-Vera, J.C., Castelán-Ortega, O.A., Galindo-Maldonado, F.A., Arango, J., Chirinda, N., Jiménez-Ocampo, R., Valencia-Salazar, S.S., Flores-Santiago, E.J., Montoya-Flores, M.D., Molina-Botero, I.C., Piñeiro-Vázquez, A.T., Arceo-Castillo, J.I., Aguilar-Pérez, C.F., Ramírez-Avilés, L. and Solorio-Sánchez, F.J., 2020. Review: Strategies for enteric methane mitigation in cattle fed tropical forages. Animal, 14(3), pp. 453-463. https://doi.org/10.1017/S1751731120001780

Ledea, J.L., Ray, J. V, Cabrera, Y. and Nuviola, Y., 2016. Performance of male bovines under intensive grazing of pasture and shrub legumes during dry period in Valle del Cauto. Cuban Journal of Agricultural Science, 50(2), pp.225–233. https://www.redalyc.org/pdf/1930/193048877006.pdf

Leng, R.A., 2014. Interactions between microbial consortia in biofilms: A paradigm shift in rumen microbial ecology and enteric methane mitigation. Animal Production Science, 54(5), 519-543. https://doi.org/10.1071/AN13381

Lezcano, Y., Soca, M., Ojeda, F., Roque, E., Fontes, D., Montejo, I.L., Santana, H., Martínez, J. and Cubillas, N., 2012. Caracterización bromatológica de Tithonia diversifolia (Hemsl.) A. Gray en dos etapas de dos etapas de su ciclo fisiológico. Pastos y Forrajes, 35(3), pp. 275-282. http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S0864-03942012000300003&lng=es&nrm=iso

Lima, P.M.T., Moreira, G.D., Sakita, G.Z., Natel, A.S., Mattos, W.T., Gimenes, F.M.A., Gerdes, L., McManus, C., Abdalla, A.L. and Louvandini, H., 2018. Nutritional evaluation of the legume Macrotyloma axillare using in vitro and in vivo bioassays in sheep. Journal of Animal Physiology and Animal Nutrition, 102(2), pp. e669-e676. https://doi.org/10.1111/jpn.12810

Londoño, J.C., Mahecha, L.L. and Angulo, A.J., 2019. Agronomic potential and nutritional quality of Tithonia diversifolia (Hemsl.) A Gray for feeding cattle. Revista Colombiana de Ciencia Animal recia, 11(1), pp. 28–41. http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S2027-42972019000100028&lng=en&nrm=iso

Longo, C., Bueno, I.C.S., Nozella, E.F., Goddoy, P.B., Cabral Filho, S.L.S. and Abdalla, A.L., 2006. The influence of head-space and inoculum dilution on in vitro ruminal methane measurements. International Congress Series, 1293, pp. 62-65. https://doi.org/10.1016/j.ics.2006.03.017

López, S., Carro, M.D., González, J.S. and Ovejero, F.J., 1998. Comparison of different in vitro and in situ methods to estimate the extent and rate of degradation of hays in the rumen. Animal Feed Science and Technology, 73(1–2), pp. 99-113. https://doi.org/10.1016/S0377-8401(98)00129-1

López-Vigoa, O., Lamela-López, L., Sánchez-Santana, T., Olivera-Castro, Y., García-López, R., Herrera-Villafranca, M. and González-Ronquillo, M., 2019. Evaluación del valor nutricional de los forrajes en un sistema silvopastoril. Pastos y Forrajes, 42(1), pp. 57-67. http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S0864-03942019000100057&lng=es&nrm=iso

Mahecha, L. and Rosales, M., 2005. Valor Nutricional del Follaje de Botón de Oro Tithonia diversifolia. Livestock Research for Rural Development, 17(9). https://lrrd.cipav.org.co/lrrd17/9/mahe17100.htm

Makkar, H.P.S., Aderibigbe, A.O. and Becker, K., 1998. Comparative evaluation of non-toxic and toxic varieties of Jatropha curcas for chemical composition, digestibility, protein degradability and toxic factors. Food Chemistry, 62(2), pp. 207-215. https://doi.org/10.1016/S0308-8146(97)00183-0

Makkar, H.P.S., Becker, K., Sporer, F. and Wink, M., 1997. Studies on Nutritive Potential and Toxic Constituents of Different Provenances of Jatropha curcas. Journal of Agricultural and Food Chemistry, 45(8), pp. 3152-3157. https://doi.org/10.1021/jf970036j

Martínez-Herrera, J., Siddhuraju, P., Francis, G., Dávila-Ortíz, G. and Becker, K., 2006. Chemical composition, toxic/antimetabolic constituents, and effects of different treatments on their levels, in four provenances of Jatropha curcas L. from Mexico. Food Chemistry, 96(1), pp. 80-89. https://doi.org/10.1016/j.foodchem.2005.01.059

Massey, F.J., 1951. The Kolmogorov-Smirnov Test for Goodness of Fit. Journal of the American Statistical Association, [online] 46(253), pp.68–78. https://doi.org/10.1080/01621459.1951.10500769

Mauricio, R.M., Mould, F.L., Dhanoa, M.S., Owen, E., Channa, K.S. and Theodorou, M.K., 1999. A semi-automated in vitro gas production technique for ruminant feedstuff evaluation. Animal Feed Science and Technology, 79(4), pp. 321-330. https://doi.org/10.1016/S0377-8401(99)00033-4

Medina, M.G., García, D.E., González, M.E., Cova, L.J. and Moratinos, P., 2009. Variables morfoestructurales y de calidad de la biomasa de Tithonia diversifolia en la etapa inicial de crecimiento. Zootecnia Tropical, 27(2), pp. 121-134. http://ve.scielo.org/scielo.php?script=sci_arttext&pid=S0798-72692009000200003&lng=es&nrm=iso

Meza-Bone, G.A., Meza-Bone, C.J., Avellaneda-Cevallo, J.H., Godoy-Montiel, L.A., Barros-Rodríguez, M.A. and Jines-Fernández, F., 2021. Degradación ruminal in vitro en Tithonia diversifolia. Agronomía Mesoamericana, 33(1). https://doi.org/10.15517/am.v33i1.43206.

Molina, I, Lemos, G., Montoya, S., Villegas, G., Rivera Herrera, J., Marín, J., Chará, J., Barahona, R,. (2015). Emisiones in vivo de metano en sistemas de producción con y sin inclusión de Tithonia diversifolia. Conference: 3 Congreso Nacional de Sistemas Silvopastoriles – VIII Congreso Internacional de Sistemas AgroforestalesAt: Misiones, Argentina, Volume: Pablo L. Peri, Editor. 1ª Ed. Santa Cruz. Ediciones INTA, 2015. ISBN 978-987-521-611-2. pp. 678-682

Nieves, D., Terán, O., Cruz, L., Mena, M., Gutiérrez, F. and Ly, J., 2011. Digestibilidad de nutrientes en follaje de árnica (Tithonia diversifolia) en conejos de engorde. Tropical and Subtropical Agroecosystems, 14(1), pp. 309-314. https://www.redalyc.org/pdf/939/93915703030.pdf

Nieves, M.C. and Aspuria, E.T., 2011. Callus induction in cotyledons of Moringa oleifera lam. Philippine Agricultural Scientist, 94(3), pp.239–247. https://www.researchgate.net/profile/Mylene-Nieves/publication/265478772_Callus_Induction_in_Cotyledons_of_Moringa_oleifera_Lam/links/5ac1cf6d45851584fa75ad05/Callus-Induction-in-Cotyledons-of-Moringa-oleifera-Lam.pdf

Ningrat, R.W.S., Zain, M., Elihasridas, Makmur, M., Putri, E.M. and Sari, Y.C., 2020. Effect of Dietary Supplementation Based on Ammoniated Palm Frond with Saccharomyces cerevisiae and Gambier Leaves Waste on Nutrient Intake and Digestibility, Daily Gain and Methane Production of Simmental Cattle. Advances in Animal and Veterinary Sciences, 8(12), pp. 1325-1332. https://doi.org/10.17582/journal.aavs/2020/8.12.1325.1332

Ningrat, R.W.S., Zain, M., Erpomen, Putri, E.M. and Makmur, M., 2019. Effects of Leucaena leucocephala supplementation to total mixed ration based on ammoniated rice straw onfiber digestibility and rumen fermentation characteristics in vitro. International Journal on Advanced Science, Engineering and Information Technology, 9(3), pp. 916-921. https://doi.org/10.18517/ijaseit.9.3.8009

Ningrat, R.W.S., Zain, M., Erpomen and Suryani, H., 2018. Effects of supplementation of different sources of tannins on nutrient digestibility, methane production and daily weight gain of beef cattle fed on ammoniated oil palm frond based diet. International Journal of Zoological Research, 14(1), pp. 8-13. https://doi.org/10.3923/ijzr.2018.8.13

La O. O., González, H., Orozco, A., Castillo, Y., Ruiz, O., Estrada, A., Ríos, F. and Gutiérrez, E., 2012. Composición química, degradabilidad ruminal in situ y digestibilidad in vitro de ecotipos de Tithonia diversifolia de interés para la alimentación de rumiantes. Revista Cubana de Ciencia Agrícola, 42(1), pp. 47-53. https://www.redalyc.org/pdf/1930/193024313008.pdf

Orskov, E.R. and Mcdonald, I., 1979. The estimation of protein degradability in the rumen from incubation measurements weighted according to rate of passage. The Journal of Agricultural Science, 92(2), pp. 499-503. https://doi.org/10.1017/S0021859600063048

Ortiz Grisales, S., Bastidas Burbano, L.V., Ordoñez Narváez, G.A., Valdés Restrepo, M.P., Baena García, D. and Vallejo Cabrera, F.A., 2014. Inbreeding and Gene Action in Butternut Squash (Cucurbita moschata) Seed Starch Content. Revista Facultad Nacional de Agronomía Medellín, 67(1), pp. 7169-7175. https://doi.org/10.15446/rfnam.v67n1.42634

Paterson, R.T., Quiroga, L., Sauma, G. and Samur, C., 1983. Crecimiento en época seca de novillos cebú criollos con acceso limitado a Leucaena. Producción Animal Tropical, 8(2), pp.150–151.

Pavela, R., Dall’Acqua, S., Sut, S., Baldan, V., Ngahang Kamte, S.L., Biapa Nya, P.C., Cappellacci, L., Petrelli, R., Nicoletti, M., Canale, A., Maggi, F. and Benelli, G., 2018. Oviposition inhibitory activity of the Mexican sunflower Tithonia diversifolia (Asteraceae) polar extracts against the two-spotted spider mite Tetranychus urticae (Tetranychidae). Physiological and Molecular Plant Pathology, 101, pp. 85-92. https://doi.org/10.1016/j.pmpp.2016.11.002

Posada, S., Noguera Solano, R. and Bolívar Vergara, D., 2006. Relación entre presión y volumen para la implementación de la técnica in vitro de producción de gases en Medellín, Colombia. Revista Colombiana de Ciencias Pecuarias, 19(4), pp. 407-414. http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0120-06902006000400006&lng=en&nrm=iso

Ravhuhali, K.E., Msiza, N.H. and Mudau, H.S., 2022. Seasonal dynamics on nutritive value, chemical estimates and in vitro dry matter degradability of some woody species found in rangelands of South Africa. Agroforestry Systems, 96(1), pp. 1-11. https://doi.org/10.1007/s10457-021-00683-x

Rivera, J., Chará, J., Goméz, J., Ruíz, T. and Barahona, R., 2018. Variabilidad fenotípica y composición fitoquímica de Tithonia diversifolia A. Gray para la producción animal sostenible. Livestock Research for Rural Development, 30(12), pp. 1-20. https://www.researchgate.net/profile/Rolando-Barahona-Rosales-2/publication/329196626_Variabilidad_fenotipica_y_composicion_fitoquimica_de_Tithonia_diversifolia_A_Gray_para_la_produccion_animal_sostenible/links/5c05e94b299bf169ae304cb2/Variabilidad-fenotipica-y-composicion-fitoquimica-de-Tithonia-diversifolia-A-Gray-para-la-produccion-animal-sostenible.pdf

Rodríguez, R., Fondevila, M. and Castrillo, C., 2009. In vitro ruminal fermentation of Pennisetum purpureum CT-115 supplemented with four tropical browse legume species. Animal Feed Science and Technology, 151(1–2), pp. 65-74. https://doi.org/10.1016/j.anifeedsci.2008.11.005

Samir Attia Nagadi, S.A.N., 2019. In vitro Gas Production, Methane Emission and Rumen Fermentation Characteristics with Increasing Roughage to Concentrate Ratios. journal of King Abdulaziz University - Meteorology, Environment and Arid Land Agriculture Sciences, 28(2), pp. 27-36. https://doi.org/10.4197/met.28-2.3

Sauvant, D., Giger-Reverdin, S., Serment, A. and Broudiscou, L., 2011. Influences des régimes et de leur fermentation dans le rumen sur la production de méthane par les ruminants. Productions Animales, 24(5), pp. 433-446. https://doi.org/10.20870/productions-animales.2011.24.5.3276

Van Soest, P.V., Robertson, J.B. and Lewis, B.A., 1991. Methods for dietary fiber, neutral detergent fiber and non-starch polysaccharides in relation to animal nutrition. Journal of Dairy Science, 74(10), pp.3583–3597. https://www.sciencedirect.com/science/article/pii/S0022030291785512

Theodorou, M.K., Williams, B.A., Dhanoa, M.S., McAllan, A.B. and France, J., 1994. A simple gas production method using a pressure transducer to determine the fermentation kinetics of ruminant feeds. Animal Feed Science and Technology, 48(3–4), pp. 185-197. https://doi.org/10.1016/0377-8401(94)90171-6

Verdecia, D.M., Herrera, R.S., Ramírez, J.L., Leonard, I., Bodas, R., Andrés, S., Giráldez, F.J., González, J.S., Arceo, Y., Álvarez, Y. & López, S. 2013. Effect of the re-growth age on the nutritive quality of Neonotonia wightii in the Cauto valley, Cuba. Cuban Journal of Agricultural Science, 47(1), pp. 89–95, https://cjascience.com/index.php/CJAS/article/view/261

Vivas-Arturo, W.F., Mendoza-Rivadeneira, F.A., Fernández-Romay, Y., La O-León, O. and Ledea Rodríguez, J.L., 2022. Comportamiento biológico de seis cultivares de Tithonia diversifolia (Helms.) A. Gray. Tropical and Subtropical Agroecosystems, 25(1), p. 009. https://doi.org/10.56369/tsaes.3817




URN: http://www.revista.ccba.uady.mx/urn:ISSN:1870-0462-tsaes.v27i3.52110

DOI: http://dx.doi.org/10.56369/tsaes.5211



Copyright (c) 2024 Ximena Hernández-Arboleda, Sanín Ortiz-Grisales, Orestes La O-León, Yulien Fernández-Romay, Walter Fernando Vivas-Arturo, Adibe Luiz-Abdalla, Simón Pérez-Márquez, José Leonardo Ledea Rodríguez

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.