SUITABILITY AREAS FOR Candidatus Liberibacter asiaticus UNDER DIFFERENT CLIMATE CHANGE SCENARIOS IN MEXICO

Oliver Rodríguez-Aguilar, Jose López-Collado, Monica de la Cruz Vargas-Mendoza, Alejandra Soto-Estrada, Clemente de Jesus Garcia-Avila

Abstract


Background. Climate change models have projected an increase in the distribution of certain crop pests of economic importance by forecasting more favorable future conditions for these organisms. In citrus farming, Huanglongbing is one of the most devastating diseases worldwide, since it has caused the death of millions of trees. Objetive. The objective of this study was to estimate the current and future distribution of Candidatus Liberibacter asiaticus in Mexico, under the climate change scenarios SSP2 4.5 and SSP5 8.5, for the years 2050 and 2070. Methodology. Distribution models were generated with MaxEnt and R, using uncorrelated bioclimatic variables from eight General Circulation Models (GCM) derived from CMIP6 and disease presence data. Results. The results indicate that the current suitability is 44.6 %. The future distribution depended on how model predictions were pooled. An optimistic approach that considered the intersection of all models showed a small reduction of 4.1% while, considering the union of all the GCM models, the increase will vary from 12.3 to 20.1 % of the Mexican territory depending on the particular scenario and time projection. Implications. The zones of potential occurrence of Candidatus Liberibacter asiaticus include most of the citrus-growing areas in Mexico. Conclusion. In some regions, future scenarios show a reduction in the potential occurrence of the species in citrus plantations. However, the risk remains because its surroundings include suitable areas that can be sources of dissemination of the disease. 

Keywords


bioclimatic variables; citrus; Huanglongbing; potential distribution; species distribution modeling.

Full Text:

PDF

References


Aiello?Lammens, M.E., Boria, R.A., Radosavljevic, A., Vilela, B. and Anderson, R.P., 2015. spThin: an R package for spatial thinning of species occurrence records for use in ecological niche models. Ecography, 38(5), pp. 541-545. https://doi.org/10.1111/ecog.01132

Ajene, I.J., Khamis, F.M., van Asch, B., Pietersen, G., Seid, N., Rwomushana, I. and Ekesi, S., 2020. Distribution of Candidatus Liberibacter species in Eastern Africa, and the first report of Candidatus Liberibacter asiaticus in Kenya. Scientific Reports, 10(1), pp. 1-10. https://doi.org/10.1038/s41598-020-60712-0

Ajene, I.J., Khamis, F., van Asch, B., Pietersen, G., Rasowo, B.A., Ekesi, S. and Mohammed, S., 2020. Habitat suitability and distribution potential of Liberibacter species (“Candidatus Liberibacter asiaticus” and “Candidatus Liberibacter africanus”) associated with citrus greening disease. Diversity and Distributions, 26(5), pp. 575-588. https://doi.org/10.1111/ddi.13051

Baldwin, R.A., 2009. Use of maximum entropy modeling in wildlife research. Entropy, 11(4), pp. 854-866. https://doi.org/10.3390/e11040854

Becerra-López, J.L., Romero-Méndez, U., Ramírez-Bautista, A. y Becerra-López, J.S., 2016. Revisión de las técnicas para el modelado de la distribución de las especies. Revista Científica Biológico Agropecuaria Tuxpan, 4(1), pp. 176-187. https://doi.org/10.47808/revistabioagro.v4i1.47

Booth, T.H., 2022. Checking bioclimatic variables that combine temperature and precipitation data before their use in species distribution models. Austral Ecology, 47(7), pp. 1506-1514. https://doi.org/10.1111/aec.13234

Bové, J.M., 2006. Huanglongbing: a destructive, newly-emerging, century-old disease of citrus. Journal of Plant Pathology, 8(1), pp. 7-37. https://www.jstor.org/stable/41998278

Camacho-Tapia, M., Rojas-Martínez, R.I., Rebollar-Alviter, Á., Aranda-Ocampo, S. and Suárez-Espinosa, J., 2016. Biological, ecological, epidemiological and management aspects of Candidatus Liberibacter. Revista Chapingo Serie Horticultura, 22(1), pp. 5-16. https://doi.org/10.5154/r.rchsh.2015.09.021

Cobos, M.E., Peterson, A.T., Barve, N. and Osorio-Olvera, L., 2019. Kuenm: an R package for detailed development of ecological niche models using Maxent. PeerJ, 7(1), pp. 1-15. http://doi.org/10.7717/peerj.6281

Contreras-Servín, C., 2014. Condiciones climáticas asociadas al establecimiento y dispersión del Huanglonbing (HLB) y su vector la Diaphorina citri en México. En: M. G. Galindo-Mendoza y C. Contreras-Servín, eds. Huanglonbing y psilido asiático de los cítricos: un acercamiento metodológico multidisciplinario. San Luis Potosi, México: Colección Sanidad Vegetal, pp. 101-118. https://www.researchgate.net/publication/283054420

Flores-Sánchez, J.L., Mora-Aguilera, G., Loeza-Kuk, E., López-Arroyo, J.I., Domínguez-Monge, S., Acevedo-Sánchez, G. y Robles-García, P., 2015. Pérdidas en producción inducidas por Candidatus Liberibacter asiaticus en limón persa, en Yucatán México. Revista Mexicana de Fitopatología, 33 (2), pp. 195-210. https://www.redalyc.org/articulo.oa?id=61242145005

García, E., 1998. 'Climas' (clasificación de Köppen, modificado por García). Escala 1:1000000. [online] México: Comisión Nacional para el Conocimiento y Uso de la Biodiversidad. Available at: http://www.conabio.gob.mx/informacion/gis/ [Accessed 10 November 2022].

García, E., 2004. Modificaciones al sistema de clasificación de climática de Kóppen. 5ª edición. México: Instituto de Geografía, Universidad Autónoma de México. http://www.publicaciones.igg.unam.mx/index.php/ig/catalog/book/83

García-Ávila, C.J., Trujillo-Arriaga, F.J., Quezada-Salinas, A., Ruiz-Galván, I., Bravo-Pérez, D., Pinedaríos, J. and Robles-García, P.I., 2021. Holistic area-wide approach for successfully managing citrus greening (huanglongbing) in México. En: J. Hendrichs, R. Pereira y M. J. B. Vreysen, eds. Area-wide Integrated pest management: development and field application. Boca Raton, Florida: Chemical Rubber Company Press. pp. 33-49. https://doi.org/10.1201/9781003169239-4

Ghini, R., Bettiol, W. and Hamada, E., 2011. Diseases in tropical and plantation crops as affected by climate changes: current knowledge and perspectives. Plant Pathology, 60(1), pp. 122-132. https://doi.org/10.1111/j.1365-3059.2010.02403.x

Granados-Ramírez, G.R. y Hernández-Hernández, R., 2018. Reconversión de cultivos como resultado de la presencia de Huanglongbing en Colima, México. Revista Geográfica de América Central, 29(61), pp. 413-431. https://doi.org/10.15359/rgac.61-3.21

Heit, G., Sione, W. y Della, P.A., 2016. Efecto del cambio climático en la distribución potencial de HLB en Sudamérica. Revista Iberoamericana de Bioeconomía y Cambio Climático, 2(4), pp. 484-493. https://doi.org/10.5377/ribcc.v2i4.5925

Hernández-Landa, L., López-Collado, J., González-Hernández, H., Vargas-Mendoza, M., Osorio-Acosta, F. and Nava-Tablada, M.E., 2018. Fluctuation and synchronization of adults catches of Diaphorina citri Kuwayama (Hemiptera: Liviidae) in urban backyards and commercial citrus plantations. Journal of Asia-Pacific Entomology, 21(3), pp. 745-753. https://doi.org/10.1016/j.aspen.2018.05.005

Hernández-Mansilla, A.A., Sorí-Gómez, R., López-Mayea, A., Ávila-Espinosa, M., Córdova-García, O. y Benedico-Rodríguez, O., 2017. Escenarios bioclimáticos de Huanglongbing (HLB) en cítrico en Ciego de Ávila. Journal of the Selva Andina Biosphere, 5(2), pp. 133-143. https://doi.org/10.36610/j.jsab.2017.050200133

Hussain, M., Bano, S., Qasim, M., Gao, J., Arthurs, S.P., Wang, L., Qiu, D. and Mao, R., 2022. Association between Temperature and Reproductive Fitness of Diaphorina citri Infected with Candidatus Liberibacter Asiaticus. Agronomy, 12(4), pp. 1-10. https://doi.org/10.3390/agronomy12040815

Iftikhar, Y., Rauf, S., Shahzad, U. and Zahid, M.A., 2016. Huanglongbing: Pathogen detection system for integrated disease management–A review. Journal of the Saudi Society of Agricultural Sciences, 15(1), pp. 1-11. https://doi.org/10.1016/j.jssas.2014.04.006

INEGI., 2020. Anauario estadístico y geográfico por entidad federativa 2020. [pdf] México: Instituto Nacional de Estadística y Geografía. Available at: https://www.inegi.org.mx/contenidos/productos/prod_serv/contenidos/espanol/bvinegi/productos/nueva_estruc/702825197513.pdf [Accessed 16 May 2023].

Jacinto-Padilla, J., López-Collado, J., López-Collado, C.J. and García-García, C.G., 2017. Species distribution modeling for wildlife management: Ornamental butterflies in México. Journal of Asia-Pacific Entomology. 20(2), pp. 627-636. https://doi.org/10.1016/j.aspen.2017.03.026

Kumar, S., Graham, J., West, A.M. and Evangelista, P. H., 2014. Using district-level occurrences in MaxEnt for predicting the invasion potential of an exotic insect pest in India. Computers and Electronics in Agriculture, 103, pp. 55-62. https://doi.org/10.1016/j.compag.2014.02.007

López-Collado, J., 2010. Análisis de riesgo de Diaphorina citri y HLB en México. [pdf] Monterrey, México: Simposio nacional sobre investigación para el manejo del psílido asiático de los cítricos y el Huanglongbing en México. Available at: https://drive.google.com/file/d/188mCEnZyCsS306GkvmikFopjuntwMxgO/view [Accessed 10 May 2021].

López-Collado, J., López-Arroyo, J.I., Robles-García, P.L. and Márquez-Santos, M., 2013. Geographic distribution of habitat, development, and population growth rates of the Asian citrus psyllid, Diaphorina citri, in Mexico. Journal of Insect Science, 13(1), pp. 1-17. https://doi.org/10.1673/031.013.11401

Manjunath, K.L., Halbert, S.E., Ramadugu, C., Webb, S. and Lee, R.F., 2008. Detection of ‘Candidatus Liberibacter asiaticus’ in Diaphorina citri and Its Importance in the Management of Citrus Huanglongbing in Florida. Phytopathology, 98 (4), pp. 387-396. https://doi.org/10.1094/PHYTO-98-4-0387

Martínez-Martínez, G.Y., Ruíz-Acosta, S.D.C., Olvera-Vargas, L.A., Sánchez-Hernández, R. y Galindo-Alcántara, A., 2021. Modelo de zonas potenciales para el establecimiento de la enfermedad del huanglongbing en el estado de Tabasco. Tropical and Subtropical Agroecosystems, 24(3), pp. 1-12. https://doi.org/10.56369/tsaes.3511

Mateo, G.R., Felicísimo, A.M. y Muñoz, J., 2011. Modelos de distribución de especies: Una revisión sintética. Revista Chilena de Historia Natural, 84(2), pp. 217-240. http://dx.doi.org/10.4067/S0716-078X2011000200008

Mateo, G.R., Felicísimo, M.A. y Muñoz, J., 2012. Modelos de distribución de especies y su potencialidad como recurso educativo interdisciplinar. Reduca (Biología). Serie Ecología, 5(1), pp. 137-153. https://www.revistareduca.es/index.php/biologia/article/view/881

Munyaneza, J.E., Sengoda, V.G., Buchman, J.L. and Fisher, T.W., 2011. Effects of temperature on ‘Candidatus Liberibacter solanacearum’ and zebra chip potato disease symptom development. Plant Disease, 96(1), pp. 18-23. https://doi.org/10.1094/PDIS-03-11-0185

Narouei-Khandan, H.A., Halbert, S.E., Worner, S.P. and Van Bruggen, A.H., 2015. Global climate suitability of citrus huanglongbing and its vector, the Asian citrus psyllid, using two correlative species distribution modeling approaches, with emphasis on the USA. European Journal of Plant Pathology, 144(3), pp. 655-670. https://doi.org/10.1007/s10658-015-0804-7

Nava, D.E., Torres, M.L.G., Rodrigues, M.D.L., Bento, J.M.S. and Parra, J.R.P., 2007. Biology of Diaphorina citri (Hem., Psyllidae) on different hosts and at different temperatures. Journal of Applied Entomology, 131(10), pp. 709-715. https://doi.org/10.1111/j.1439-0418.2007.01230.x

O’Donnell, M.S. and Ignizio, D.A., 2012. Bioclimatic predictors for supporting ecological applications in the conterminous United States. United States Geological Survey Data Series, 691(10), pp. 1-10. https://doi.org/10.3133/ds691

Phillips, S.J., Anderson, R.P. and Schapire, R.E., 2006. Maximum entropy modeling of species geographic distributions. Ecological Modelling, 190(4), pp. 231-259. https://doi.org/10.1016/j.ecolmodel.2005.03.026

Peterson A.T., Soberón, J., Pearson, R.G., Anderson, R.P., Martínez-Meyer, E., Nakamura, M. and Bastos A.M., 2011. Ecological Niches and Geographic Distributions. Nueva Jersey, Estados Unidos: Princeton University Press. https://www.jstor.org/stable/j.ctt7stnh

Pliscoff, P. y Fuentes-Castillo, T., 2011. Modelación de la distribución de especies y ecosistemas en el tiempo y en el espacio: una revisión de las nuevas herramientas y enfoques disponibles. Revista de Geografía Norte Grande, (48), pp. 61-79. http://dx.doi.org/10.4067/S0718-34022011000100005

Quiner, C.A. and Nakazawa, Y., 2017. Ecological niche modeling to determine potential niche of Vaccinia virus: a case only study. International Journal of Health Geographics, 16(28), pp. 1-12. https://doi.org/10.1186/s12942-017-0100-1

Raiol-Junior, L.L., Cifuentes-Arenas, J.C., Cunniffe, N.J., Turgon, R. and Lopes, S.A., 2021. Modeling ‘Candidatus Liberibacter asiaticus’ Movement Within Citrus Plants. Phytopathology, 111(10), pp. 1711-1719. https://doi.org/10.1094/PHYTO-12-20-0559-R

Rodríguez-Aguilar, O., López-Collado, J., Soto-Estrada, A., Vargas-Mendoza, M.C. and García-Avila, C.J., 2023. Future spatial distribution of Diaphorina citri in Mexico under climate change models. Ecological Complexity, 53, pp. 1-10. https://doi.org/10.1016/j.ecocom.2023.101041

Rosvall, M., Axelsson, D. and Bergstrom, C.T., 2009. The map equation. The European Physical Journal Special Topics, 178(1), pp. 13-23. https://doi.org/10.1140/epjst/e2010-01179-1

Riahi, K., Van Vuuren, D.P., Kriegler, E., Edmonds, J., O’neill, B.C., Fujimori, S., Bauer, N., Calvin, K., Dellink, R., Fricko, O., Lutz, W., Popp, A., Crespo, C.J., Samir K.C., Leimbach, M., Jiang, L., Kram, T., Rao, S., Emmerling, J., Ebi, K., Hasegawa, T., Havlik, P., Humpenoder, F., Da Silva, L.A., Smith, S., Stehfest, E., Bosetti, V., Eom, J., Gernaat, D., Masui, T., Rogelj, J., Strefler, J., Drouet, L., Krey, V., Luderer, G., Harmsen, M., Takahashi, K., Baumstark, L., Doelman, J.C., Kainuma, M., Klimont, Z., Marangoni, G., Lotze-Campen, H., Obersteiner, M., Tabeau, A. and Tavoni, M., 2017. The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: An overview. Global Environmental Change, 42, pp. 153-168. https://doi.org/10.1016/j.gloenvcha.2016.05.009

Sanderson, B.M., Knutti, R. and Caldwell, P., 2015. A Representacy democracy to reduce interdependency in a multimodel ensemble. Journal of Climate, 28(13), pp. 5171–5194. https://doi.org/10.1175/JCLI-D-14-00362.1

SENASICA., 2019. Candidatus Liberibacter spp. Huanglongbing, HLB, reverdecimiento de los cítricos o enfermedad del Dragón amarillo. [pdf] Estado de México: Servicio Nacional de Sanidad, Inocuidad y Calidad Agroalimentaria – Dirección General de Sanidad Vegetal – Dirección del Centro Nacional de Referencia Fitosanitaria. Available at: [Accessed 11 April 2022].

SIAP., 2020. Anuario estadístico de la producción agrícola 2020. [online] México: Servicio de Información Agroalimentaria y Pesquera. Available at: [Accessed 20 May 2022].

SINAVEF., 2017. Vigilancia del huanglongbing. Situación de detecciones. [pdf] México: Sistema Nacional de Vigilancia Epidemiológica Fitosanitaria (SINAVEF). Available at: [Accessed 17 March 2018].

Timaná, F.M. y Cuentas, R.M.A., 2015. Biogeografía predictiva: técnicas de modelamiento de distribución de especies y su aplicación en el impacto del cambio climático. Espacio y Desarrollo, (27), pp. 159-179. http://dx.doi.org/10.18800/espacioydesarrollo.201501.008

Villa-Carmona, A. y Cortes-Ortiz, A., 2014. Generalidad sobre los modelos de distribución de especies. Vidsupra Visión Científica, 6(1), pp. 23-26. http://www.repositoriodigital.ipn.mx/handle/123456789/20733

Wang, R., Yang, H., Luo, W., Wang, M., Lu, X., Huang, T., Zhao, J. and Li, Q., 2019. Predicting the potential distribution of the Asian citrus psyllid, Diaphorina citri (Kuwayama), in China using the MaxEnt model. PeerJ, 7, pp. 1-19. https://doi.org/10.7717/peerj.7323

Wilson, P.D., 2011. Distance-based methods for the analysis of maps produced by species distribution models. Methods in Ecology and Evolution, 2(6), pp. 623-633. https://doi.org/10.1111/j.2041-210X.2011.00115.x




URN: http://www.revista.ccba.uady.mx/urn:ISSN:1870-0462-tsaes.v27i1.52074

DOI: http://dx.doi.org/10.56369/tsaes.5207



Copyright (c) 2023 Jose López-Collado

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.