Galleria mellonella Y Tenebrio molitor BIODEGRADERS OF BAGS, STRAWS, UNICEL CUPS AND FACE MASK

Ausencio Azuara Domínguez, Amado Pérez Rodríguez, Pedro Fabián Grifaldo Alcántara, Martha Olivia Lázaro-Dzul, Yuridia Durán Trujillo, Haidel Vargas Madriz, Abraham Monteon Ojeda

Abstract


Background. Currently, articles based on polyethylene and polypropylene have become an important element to solve social needs. However, these products take between 100 and 1000 years to decompose. Therefore, the need arises to look for new strategies that allow the degradation of these products in a shorter period of time. Objetive. Determine the capacity of the larvae of Galleria mellonella L. (Lepidoptera: Pyralidae) and Tenebrio molitor L. (Coleoptera: Tenebrionidae) to degrade bags, straws, glasses and face masks. Methodology. In the laboratory, five experiments were carried out with third and fourth instar larvae of G. mellonella and T. molitor. In each experiment, the treatments (bags, straws, cups, and masks) and the G. mellonella and T. molitor larvae were placed in a plastic container with a tight-fitting lid. Afterward, the larvae were weighed every 24 hours for 10 days to record the consumption of the treatments. Results. In experiments 1 and 2, no statistical difference was observed in the consumption of polyethylene and biodegradable bags and straws by the larvae of G. mellonella and T. molitor. In contrast, a significant statistical difference was observed between treatments in the pupae record. In the results of experiments 3 and 4, a significant statistical difference was observed between the treatments in the consumption of glasses (polystyrene and polyhydroxyalkanoate) and in the development of pupae of G. mellonella and T. molitor. In experiment 5, no significant statistical difference was observed between treatments in the consumption of masks and development of G. mellonella pupae. Implications. In this research work, basic information was generated on the consumption of bags, straws, cups, and face masks by G. mellonella and T. molitor. In the case of the consumption of face masks, it is the first record of the consumption of this article by G. mellonella larvae. Conclusions. G. mellonella and T. molitor consume products based on polyethylene, polystyrene and polyhydroxyalkanoate, likewise G. mellonella consumes face masks, essential product to avoid infections during the pandemic generated by the COVID-19 coronavirus.

Keywords


Food; garbage; COVID-19; degradation; insects; biodegradable products.

Full Text:

PDF

References


Albertsson, A. C., Andersson, S. O., and Karlsson, S., 1987. The mechanism of biodegradation of polyethylene. Polymer Degradation and Stability, 18(1), pp. 73-87. https://doi.org/10.1016/0141-3910(87)90084-X

Al-Jailawi, M. H., Ameen, R. S. and Al-Saraf, A. A., 2015. Polyethylene degradation by Pseudomonas putida S3A. International Journal of Advances Research, Biological Sciences, 2, pp. 90–97.

Balazy, A., Toivola, M., Adhikari, A., Sivasubramani, S. K., Reponen, T. and Grinshpun, S. A., 2006. Do N95 respirators provide 95% protection level against airborne viruses, and how adequate are surgical masks? Association for Professionals in Infection Control and Epidemiology, 34(2), pp. 51-57. https://doi.org/10.1016/j.ajic.2005.08.018

Bombelli, P., Howe, C. J. and Bertoccini, F.,, 2017. Polyethylene bio-degradation by cartepillars of the wax moth Galleria mellonella. Current Biology Magazine, 27(8), pp. 283-293. https://doi.org/10.1016/j.cub.2017.02.060

Büyükgüzel, E., Tunaz, H., Stanley, D. and Büyükgüzel, K., 2007. Eicosanoids mediate Galleria mellonella cellular immune response to viral infection. Journal of Insect Physiology, 53(1), pp. 99-105. https://doi.org/10.1016/j.jinsphys.2006.10.012

Chorine, V., 1929. L'immunité antitoxique chez les chenilles de Galleria mellonella. Institut Pasteur Annual, XLIII, T. 7, pp. 958.

Cline, L. D., 1978. Penetration of seven common flexible packaging materials by larvae and adults of eleven species of stored product insects. Journal Economic Entomology, 71(5), pp. 726-729. https://doi.org/10.1093/jee/71.5.726

Dato, V. M., Hostler, D. and Hahn, M. E., 2006. Simple Respiratory Mask. Emerging Infectious Diseases, www.cdc.gov/eid, 12(6), pp. 1033-1034. https://stacks.cdc.gov/view/cdc/16150/cdc_16150_DS1.pdf

Dickman, R., 1933. Studies on the waxmoth Galleria mellonella, with particular reference to the digestion of wax by the larvae. Journal of Cellular Physiology, 3(2), pp. 223–246. https://doi.org/10.1002/jcp.1030030206

DGCS, Dirección general de Comunicación Social, Boletín UNAM-DGCS-495, https://www.dgcs.unam.mx (consultado 13 de mayo 2021).

Frias, A. C., Ize L., I. y Gavilán G., A., 2003. La situación de los envases de plástico en México. Gaceta Ecológica, 69, pp. 67-82. https://www.redalyc.org/articulo.oa?id=53906905

Ghatge, S., Yang, Y., Jae-Hyung, A. and Hor-Gil, H., 2020. Biodegradation of polyethylene: a brief review. Applied Biological Chemistry, 63(27), pp. 1-14. https://doi.org/10.1186/s13765-020-00511-3

González-García, Y., Meza, C. J.C., González, R. O. y Códova, L. J. A., 2013. Síntesis y biodegradación de polihidroxialcanoatos: plásticos de origen microbiano. Revista Internacional de Contaminación Ambiental, 29(1), pp. 77-115. https://www.scielo.org.mx/pdf/rica/v29n1/v29n1a7.pdf

Howard, R. S., 1955. The biology of the grain beetle Tenebrio molitor with particular reference to its behavior. Ecology, 36(2), pp. 262-269. https://doi.org/10.2307/1933231

Kale, S. K., Deshmukh, A. G., Dudhare, M. S. and Patil, V. B., 2015. Microbial degradation of plastic: A review. Journal Biochemical Technology, 6(2), pp. 952-961. https://doi.org/10.31838/ijpr/2021.13.01.245

Khan, S., Nadir, S., Shah, Z. U., Shah, A. A., Karunarathana, A. C., Xu, J., Khan, A., Munir, S. and Hasan, F., 2017. Biodegradation of polyester polyurethane by Aspergillus tubingensis. Environmental Pollution. 225(30), pp. 1-12. https://doi.org/10.1016/j.envpol.2017.03.012

Kilic, E., 2018. A Environmental Friendly Insect is Tenebrio molitor (Tenebrionidae: Coleoptera). Advances in Ecological and Environmental Research, 1(2), pp. 1-13. https://www.ss-pub.org/wp-content/uploads/2019/05/AEER2018010401.pdf

Kwadha, C. A., Ong´amo, G. O., Ndegwa, P. N., Raina, S. K., and Fombong, A. T., 2017. The Biology and Control of the Greater Wax Moth, Galleria mellonella. Insects, 8(2), pp. 61. https://doi.org/10.3390/insects8020061

Loh, J. M., Adenwalla, N., Wiles, S. and Proft, T., 2013. Galleria mellonella larvae as an infection model for group A Streptococcus. Virulence, 4(5), pp. 419–428. https://doi.org/10.4161/viru.24930

Malawi, B. A., Shu-Hong, G., Tian, R., Ning, D., Shan-Shan, Y., Zhou, J., Wei-Min, W. and Criddle, C. S., 2018. Biodegradation of Polyethylene and Plastic Mixtures in Mealworms (Larvae of Tenebrio molitor) and Effects on the Gut Microbiome. Environmental Science & Technology, 52(11), pp. 6526-6533. https://doi.org/10.1021/acs.est.8b02301

Mesa-Arango, A. C., Forasteiro, A., Bernal-Martínez, L., Cuenca-Estrella, M., Mellado, M. and Zaragoza, O., 2013. The non-mammalian host Galleria mellonella can be used to study the virulence of the fungal pathogen Candida tropicalis and the effi cacy of antifungal drugs during infection by this pathogenic yeast. Medical Mycology, 51(5), pp. 461–472. https://doi.org/10.3109/13693786.2012.737031

Métalnikovs., 1908. Recherches experimentales sur les chenilles de Galleria mellonella. Archives de Zoologie Experimentale et Generale, 4(8), pp. 487-588.

Nagy, A. and Kuti, Rajmund., 2016. The Environmental Impact of Plastic Waste Incineration. AARMS, 15(3), pp. 231-237. https://doi.org/10.32565/aarms.2016.3.3

Nukmal, N., Umar, S., Puspita, A. S. and Kanedi, M., 2018. Effect of Styrofoam Waste Feeds on the Growth, Development and Fecundity of Mealworms (Tenebrio molitor). OnLine Journal of Biological Sciences, 18(1), pp. 24.28. https://doi.org/10.3844/ojbsci.2018.24.28

Paco, A., Duarte, K., da Costa, J. P., Santos, P. S.M., Pereira, R., Pereira, M.E., Freitas, A. C., Duarte, A. C. and Rocha-Santos, T. A.P., 2017. Biodegradation of polyethylene microplastics by the marine fungus Zalerion maritimum. Science of the Total Environment, 586(1), pp. 10–15. https://doi.org/10.1016/j.scitotenv.2017.02.017

Pereira, T. C., de Barros, P. P., de Oliveira, F. L.R., Rossoni, R. D., de Camargo, R. F., Teles, de M. R., Campos, J. J. and Scorzoni, L., 2018. Recent Advances in the Use of Galleria mellonella Model to Study Immune Responses against Human Pathogens. Journal of Fungi, 4(4), pp. 2-19. https://doi.org/10.3390/jof4040128

Ramarao, N., Nielsen-Leroux, C. and Lereclus, D., 2012. The Insect Galleria mellonella as a Powerful Infection Model to Investigate Bacterial Pathogenesis. Journal of Visualized Experiments, 70(4392), pp. 3791-4392. https://doi.org/10.3791/4392

Realpe-Aranda, F. J., Bustillo-Pardey, A. E. y López-Núñez, J. A., 2007. Optimización de la cría de Galleria mellonella (L.) producción de nematodos entomopatógenos parásitos de la broca del café. Cenicafé, 58(2), pp. 142-157. http://hdl.handle.net/10778/135

Restrepo-Flores, J.M., Bassi, A. and Thompson, M. R., 2014. Microbial degradation and deterioration of polyethylene A Review. International Biodeterioration & Biodegradation, 88(2014), pp. 83-90. https://doi.org/10.1016/j.ibiod.2013.12.014

Ruíz, M., Pastor, K. y Acevedo, A., 2012. Biodegradabilidad de artículos desechables en un sistema de composta con lombriz. Información Técnica, 24(2), pp. 47-56. http://dx.doi.org/10.4067/S0718-07642013000200007

Senior, N. J., Bagnall, M. C., Champion, O. L., Reynolds, S. E., La Ragione, R. M., Woodward, M. J., Salguero, F. J. and Titball, R. W., 2011. Galleria mellonella as an infection model for Campylobacter jejuni virulence. Journal of Medical Microbiology, 60(5), pp. 661–669. https://doi.org/10.1099/jmm.0.026658-0

Shah, A. A., Hasan, F., Hameed, A. and Ahmed, S., 2008. Biological degradation of plastics: a comprehensive review. Biotechnology Advances, 26(3), pp. 246-265. https://doi.org/10.1016/j.biotechadv.2007.12.005

Shan-Shan, Y., Malawi, B. A., Flanagan, J. C. A., Yang, J., Ning, D., Shen-Yang, C., Han-Qing, F., Zhi-Yue, W., Ren, J., Benbow, E., Nan-Qi, R., Waymouth, R. M., Zhou, J., CriddleC. S. and Wei-Min, W., 2018. Biodegradation of polystyrene wastes in yellow mealworms (larvae of Tenebrio molitor Linnaeus): Factors affecting biodegradation rates and the ability of polystyrene-fed larvae to complete their life cycle. Chemosphere, 191(17), pp. 979-989. https://doi.org/10.1016/j.chemosphere.2017.10.117

Sivan, A., 2011. New Perspectives in Plastic Biodegradation. Current Opinion in Biotechnology, 22(3), pp. 422-426. https://doi.org/10.1016/j.copbio.2011.01.013

Villada, H.S., Acosta H.A. y Velasco R. J., 2009. Biopolímeros Naturales Usados en Empaques Biodegradables. Mundo Alimentario, Septiembre/Octubre, México. httsp://doi.org/10.21897/rta.v12i2.652

Wang, Y. and Zhang Y., 2015. Investigation of gutassociated bacteria in Tenebrio molitor (Coleoptera: Tenebrionidae) larvae using culture-dependent and DGGE methods. Annals Entomological Society of America, 108(5), pp. 941-949. https://doi.org/10.1093/aesa/sav079

Weber, C., Pusch, S. and Opatz, T., 2017. Polyethylene bio-degradation by catephillars? Current Biology Magazine, 27(8), pp. 731–745. https://doi.org/10.1016/j.cub.2017.02.060

Wei-Min, W., Yang, J. and Criddle, C. S., 2017. Microplastics pollution and reduction strategies. Frontiers of Environmental Science & Engineering, 11(6), pp. 1-6. https://doi.org/10.1007/s11783-017-0897-7

Yang, Y., Yang, J., Wu, W.M., Zhao, J., Song, Y.L., Gao, L.C., Yang, R.F. and Jiang, L., 2015a. Biodegradation and mineralization of polystyrene by plastic-eating mealworms: part 1. chemical and physical characterization and isotopic tests. Environmental Science & Technology, 49(20), pp. 12080-12086. https://doi.org/10.1021/acs.est.5b02661

Yang, Y., Yang, J., Wu, W.M., Zhao, J., Song, Y.L., Gao, L.C., Yang, R.F. and Jiang, L., 2015b. Biodegradation and mineralization of polystyrene by plastic-eating mealworms: part 2. role of gut microorganisms. Environmental Science & Technology, 49(2015), pp. 12087-12093. https://doi.org/10.1021/acs.est.5b02663

Zhou, P., Huang, C. G., Fang, H. D., Cai, W. X., Li, D. M., Li, X. M. and Yu, H. S., 2011. The abundance composition and sources of marine debris in coastal seawaters or beaches around the northern South China Sea (China). Marine Pollution Bulletin, 62(9), pp. 1998-2007. https://doi.org/10.1016/j.marpolbul.2011.06.018




URN: http://www.revista.ccba.uady.mx/urn:ISSN:1870-0462-tsaes.v27i2.51453

DOI: http://dx.doi.org/10.56369/tsaes.5145



Copyright (c) 2024 Pedro Fabián Grifaldo Alcántara, Amado Pérez Rodríguez, Ausencio Azuara Domínguez, Martha Olivia Lázaro-Dzul, Yuridia Durán Trujillo, Haidel Vargas Madriz, Abraham Monteon Ojeda

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.