IDENTIFICATION OF Encarsia FÖRSTER (HYMENOPTERA: APHELINIDAE) SPECIES FROM NORTHEASTERN MÉXICO BY CYTOCHROME C OXIDASE SUBUNIT 1 (CO1) SEQUENCING

Daniel Alfonso García-Guerrero, Oswaldo García-Martínez, Svetlana Nikolaevna-Myartseva, Lissethe Palomo-Ligas, Luis Alberto Aguirre-Uribe, Mariano Flores-Dávila, Adriana Carolina Flores-Gallegos, Raúl Rodríguez-Herrera, Hermelindo Hernandez Torres

Abstract


Background. Aphelinidae, comprising more than 1120 species in 40 genera, are economically significant parasitoids known for preying on Aleyrodidae, Coccidae, Pseudococcidae, and Aphididae. However, there is scarcity of registered sequences for Aphelinidae and the Encarsia genus in Mexico's databases. With a widespread distribution, Encarsia stands as the largest genus within this family, boasting 96 species. The application of sequencing techniques, particularly targeting the cytochrome c oxidase subunit 1 (CO1) mitochondrial gene, has considerably eased species identification, providing valuable information at the species level. Objective. To identify Encarsia species through CO1 gene sequencing. By doing so, the study sought to augment the information available for this group in the GenBank and globally, facilitating further taxonomic comprehension and unveiling potential cryptic species. Methodology. During 2015 and 2016, we collected Aleyrodidae and Diaspididae nymphs from various locations, namely Tampico Alto and Ciudad Cuauhtémoc in Veracruz, and Altamira, Tamaulipas, and Saltillo, Coahuila. Taxonomic identification of the species Encarsia citrina, Encarsia perplexa, and Encarsia tamaulipeca was conducted alongside CO1 gene sequencing. The obtained sequences were subsequently deposited in the GenBank under the accession keys MF444685, MF444686, and MF444687, respectively. Results. Through the application of CO1 gene sequencing, we successfully identified three Encarsia species in the regions under investigation. Notably, the registration of the latter two species marked their first-ever presence in the GenBank, further augmenting the knowledge base for this genus on a global scale. Implications. The inclusion of these new sequences in the GenBank represents a significant step forward for Aphelinidae, specifically Encarsia, in Mexico. This expansion of data will serve as a valuable tool for validating traditional identification methods, exploring intra- and interspecies variations, and shedding light on previously unknown cryptic species. Conclusions. By utilizing CO1sequencing, this study successfully identified and registered three Encarsia species in the GenBank, including two species previously unrecorded worldwide. The newfound genetic data will be instrumental in enhancing our understanding of this ecologically important group, contributing to more precise taxonomic assessments and encouraging further investigations into the diversity and distribution of Aphelinidae in Mexico and beyond.

Keywords


Aphelinidae; Encarsia; COI gene sequencing; Species identification

Full Text:

PDF

References


Babcock, C.S. and Heraty, J.M., 2000. Molecular markers distinguishing Encarsia formosa and Encarsia luteola (Hymenoptera: Aphelinidae). Annals of the Entomological Society of America, 93(4), pp.738-744. http://doi.org 10.1603/0013-8746(2000)093[0738:MMDEFA]2.0.CO;2

Brusca, R.C. and Brusca, G.J., 2003. Invertebrates. 2ª ed. Sinauer Associates, Massachusetts, 936 pp. Ciencia y Mar, 9(25), pp.45-47.

Chu, D. and Wei, L., 2019. Nonsynonymous, synonymous and nonsense mutations in human cancer-related genes undergo stronger purifying selections than expectation. BMC Cancer, 19, pp.359. http://doi.org/10.1186/s12885-019-5572-x

Craw, A., 1891. Internal parasites discovered in the San Gabriel Valley; recommendations and notes. California State Board. Horticultural Bulletin, 57, pp.1-7

Doyle, J.J. and Doyle, J.L., 1987. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemical Bulletin, 19, pp.11-15

Edgar, R.C., 2004a. Muscle: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics, 5, pp.113. http://doi.org/10.1186/1471-2105-5-113

Edgar, R.C., 2004b. Muscle: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research, 32(5), pp.1792-1797. http://doi.org/10.1093/nar/gkh340

Gómez, M. and Uribe, S., 2010. Optimización de un procedimiento de extracción de ADN para mosquitos anofelinos. Revista Colombiana de Entomología, 36(2), pp.260-263. http://doi.org/10.25100/socolen.v36i2.9156

Gonzales, M.J., Dugan, J.M. and Shafer, R.W., 2002. Synonymous-non-synonymous mutation rates between sequences containing ambiguous nucleotides (Syn-SCAN). Bioinformatics, 18(6), pp.886-887. http://doi.org/10.1093/bioinformatics/18.6.886

Guzmán-Larralde, A.J., Suaste-Dzul, A.P., Gallou, A. and Peña-Carrillo, K.I., 2016. DNA recovery from microhymenoptera using six non-destructive methodologies with considerations for subsequent preparation of museum slides. Genome, 60(1), pp.85-91. http://doi.org/10.1139/gen-2015-0172

De León, J., Neumann, G., Follett, P. and Hollingsworth, R., 2010. Molecular markers discriminate closely related species Encarsia diaspidicola and Encarsia berlesei (Hymenoptera: Aphelinidae): Biocontrol candidate agents for white peach scale in Hawaii. Journal of Economic Entomology, 103, pp.908-916. http://doi.org/10.1603/EC09316

Hajibabaei, M., Janzen, D.H., Burns, J.M., Hallwachs, W. and Hebert, P.D.N., 2006. DNA barcodes distinguish species of tropical Lepidoptera. Proceedings of the National Academy of Sciences of the United States of America, 103(4), pp.968-971. http://doi.org/10.1073/pnas.0510466103

Hansson, C., 1997. Survey of Chrysocharis Förster and Neochrysocharis Kurdjumov (Hymenoptera, Eulophidae) from Mexico, including eight new species. Miscel·lània Zoològica, 20, pp.81-95.

Hebert, P.D., Cywinska, A., Ball, S.L. and deWaard, J.R., 2003. Biological identifications through DNA barcodes. Proceedings of the Royal Society of London B: Biological Sciences, 270(1512), pp.313-321. http://doi.org/10.1098/rspb.2002.2218

Huang, J. and Polaszek, A., 1998. A revision of the Chinese species of Encarsia Forster (Hymenoptera: Aphelinidae): Parasitoids of whiteflies, scale insects, and aphids (Hemiptera: Aleyrodidae, Diaspididae, Aphidoidea). Journal of Natural History, 32, pp.1825-1966. http://doi.org/10.1080/00222939800770911

Keller, I., Bensasson, D. and Nichols, R.A., 2007. Transition-Transversion bias is not universal: A counter example from grasshopper pseudogenes. PLOS Genetics, 3(2), e22. http://doi.org/10.1371/journal.pgen.0030022

Kumar, S., Stecher, G., Li, M., Knyaz, C. and Tamura, K., 2018. Mega X: Molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution, 35(6), pp.1547-1549. http://doi.org/10.1093/molbev/msy096

Martín-Piera, F. and Lobo, J.M., 2000. Diagnóstico sobre el conocimiento sistemático y biogeográfico de insectos hiperdiversos (Coleoptera, Hymenoptera y Lepidoptera) en España. En: Hacia un proyecto CYTED para el inventario y estimación de la diversidad entomológica en Iberoamérica: PRIBES 200. m3m-Monografías Tercer Milenio, Vol.1, Sociedad Entomológica Aragonesa (SEA), Zaragoza, pp.287-308

Monti, M.M., Nappo, A.G. and Giorgini, M., 2007. Molecular characterization of closely related species in the parasitic genus Encarsia (Hymenoptera: Aphelinidae) based on the mitochondrial cytochrome oxidase subunit I gene. Bulletin of Entomological Research, 95(5), pp.401-408. http://doi.org/10.1079/BER2005371

Myartseva, S.N., Ruiz-Cancino, E. and Coronado-Blanco, J.M., 2012. Serie Avispas parasíticas de plagas y otros insectos No. 8. Aphelinidae (Hymenoptera: Chalcidoidea) de importancia agrícola en México. Revisión y claves. Universidad Autónoma de Tamaulipas, Ciudad Victoria, México. 413 p.

Myartseva, S.N. and Coronado, J.M., 2002. A new parasitoid of whiteflies from Mexico, with a key to New World species of the genus Encarsiella (Hymenoptera: Aphelinidae). Florida Entomologist, 85(4), pp.620–624. http://doi.org/10.1653/0015-4040(2002)085[0620:ANPOWF]2.0.CO;2

Rivero, J., Zoghbi, N., Rubio-Palis, Y., Urdaneta, L. and Herrera, F., 2007. DNA degradation of Anopheles darlingi collected at high relative humidity and preserved in isopropanol. Boletín de Malariología y Salud Ambiental, 47(1), pp.149–151. Retrieved December 9, 2024, from http://ve.scielo.org/scielo.php?script=sci_arttext&pid=S1690-46482007000100013&lng=es&tlng=en

Rozas, J., Ferrer-Mata, A., Sánchez-DelBarrio, J.C., Guirao-Rico, S., Librado, P., Ramos-Onsins, S.E. and Sánchez-Gracia, A., 2017. DnaSP 6: DNA sequence polymorphism analysis of large data sets. Molecular Biology and Evolution, 34(12), pp.3299–3302. http://doi.org/10.1093/molbev/msx248

Saitou, N. and Nei, M., 1987. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Molecular Biology and Evolution, 4(4), pp.406–425. http://doi.org/10.1093/oxfordjournals.molbev.a040454

Simon, C., Frati, F., Beckenbach, A., Crespi, B., Liu, H. and Flook, P., 1994. Evolution, weighting, and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers. Annals of the Entomological Society of America, 87(6), pp.651–701. http://doi.org/10.1093/aesa/87.6.651

Tamura, K., Nei, M. and Kumar, S., 2004. Prospects for inferring very large phylogenies by using the neighbor-joining method. Proceedings of the National Academy of Sciences of the United States of America, 101(30), pp.11030–11035. http://doi.org/10.1073/pnas.0404206101

Truett, G.E., Heeger, P., Mynatt, R.L., Truett, A.A., Walker, J.A. and Warman, M.L., 2000. Preparation of PCR-quality mouse genomic DNA with hot sodium hydroxide and tris (HotSHOT). BioTechniques, 29(1), pp.52–54. http://doi.org/10.2144/00291bm09

Wakeley, J., 1994. Substitution-rate variation among sites and the estimation of transition bias. Molecular Biology and Evolution, 11(3), pp.436-442. http://doi.org/10.1093/oxfordjournals.molbev.a040124

Weathersbee, A.A., Shufran, K.A., Panchal, T.D., Dang, P.M. and Evans, G.A., 2004. Detection and Differentiation of Parasitoids (Hymenoptera: Aphidiidae and Aphelinidae) of the Brown Citrus Aphid (Homoptera: Aphididae): Species-Specific Polymerase Chain Reaction Amplification of 18S rDNA. Annals of the Entomological Society of America, 97(2), pp.286-292. http://doi.org/10.1603/0013-8746(2004)097[0286:DADOPH]2.0.CO;2

Zhang, R.-M., Zhou, H.-X., Guo, D., Tao, Y.-L., Wan, F.-H., Wu, Q. and Chu, D., 2014. Two putative bridgehead populations of Aphelinus mali (Hymenoptera: Aphelinidae) introduced in China as revealed by mitochondrial DNA marker. Florida Entomologist, 97(2), pp.401-405. http://doi.org/10.1653/024.097.0209

Zhang, Z., Li, J., Zhao, X.-Q., Wang, J., Wong, G.K.-S. and Yu, J., 2006. KaKs_Calculator: calculating Ka and Ks through model selection and model averaging. Genomics, Proteomics & Bioinformatics, 4(4), pp.259-263. http://doi.org/10.1016/S1672-0229(07)60007-2




URN: http://www.revista.ccba.uady.mx/urn:ISSN:1870-0462-tsaes.v28i1.50837

DOI: http://dx.doi.org/10.56369/tsaes.5083



Copyright (c) 2025 Daniel Alfonso García-Guerrero, Oswaldo García-Martínez, Svetlana Nikolaevna-Myartseva, Lissethe Palomo-Ligas, Luis Alberto Aguirre-Uribe, Mariano Flores-Dávila, Adriana Carolina Flores-Gallegos, Raúl Rodríguez-Herrera, Hermelindo Hernandez Torres

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.