FOLIAR AND SUBSTRATE APPLICATION OF ZINC OXIDE NANOPARTICLES AND ZN-EDTA ON THE PHYSIOLOGY AND PRODUCTION OF STRAWBERRY FRUITS (Fragaria x ananassa Duch)
Abstract
Keywords
Full Text:
PDFReferences
Adhikari, T., Kundu, S., Biswas, A.K., Tarafdar, J.C. and Subba Rao, A., 2015. Characterization of Zinc Oxide Nano Particles and Their Effect on Growth of Maize (Zea mays L.) Plant. Journal of Plant Nutrition, 38(10), pp.1505–1515. https://doi.org/10.1080/01904167.2014.992536
Al Jabri, H., Saleem, M.H., Rizwan, M., Hussain, I., Usman, K. and Alsafran, M., 2022. Zinc Oxide Nanoparticles and Their Biosynthesis: Overview. Life (Basel, Switzerland), 12(4), p.594. https://doi.org/10.3390/life12040594
Ali, S., Rizwan, M., Noureen, S., Anwar, S., Ali, B., Naveed, M., Abd Allah, E.F., Alqarawi, A.A. and Ahmad, P., 2019. Combined use of biochar and zinc oxide nanoparticle foliar spray improved the plant growth and decreased the cadmium accumulation in rice (Oryza sativa L.) plant. Environmental Science and Pollution Research International, 26(11), pp.11288–11299. https://doi.org/10.1007/s11356-019-04554-y
Amezcua Romero, J.C. and Lara Flores, M., 2017. El zinc en las plantas. Ciencia - Academia Mexicana de Ciencias, 68(3), pp.28–35.
Anu Mary Ealia, S. and Saravanakumar, M.P., 2017. A review on the classification, characterisation, synthesis of nanoparticles and their application. IOP Conference Series: Materials Science and Engineering, 263, p.032019. https://doi.org/10.1088/1757-899X/263/3/032019
Awan, S., Shahzadi, K., Javad, S., Tariq, A., Ahmad, A. and Ilyas, S., 2021. A preliminary study of influence of zinc oxide nanoparticles on growth parameters of Brassica oleracea var italic. Journal of the Saudi Society of Agricultural Sciences, 20(1), pp.18–24. https://doi.org/10.1016/j.jssas.2020.10.003
Burman, U., Saini, M. and Kumar, P.-, 2013. Effect of zinc oxide nanoparticles on growth and antioxidant system of chickpea seedlings. Toxicological & Environmental Chemistry, 95(4), pp.605–612. https://doi.org/10.1080/02772248.2013.803796
Faizan, M., Bhat, J.A., Chen, C., Alyemeni, M.N., Wijaya, L., Ahmad, P. and Yu, F., 2021. Zinc oxide nanoparticles (ZnO-NPs) induce salt tolerance by improving the antioxidant system and photosynthetic machinery in tomato. Plant Physiology and Biochemistry: PPB, 161, pp.122–130. https://doi.org/10.1016/j.plaphy.2021.02.002
Faizan, M., Faraz, A., Yusuf, M., Khan, S.T. and Hayat, S., 2018. Zinc oxide nanoparticle-mediated changes in photosynthetic efficiency and antioxidant system of tomato plants. Photosynthetica, 56(2), pp.678–686. https://doi.org/10.1007/s11099-017-0717-0
García-Gómez, C., García-Gutiérrez, S., Obrador, A. and Fernández, M.D., 2020. Study of Zn availability, uptake, and effects on earthworms of zinc oxide nanoparticle versus bulk applied to two agricultural soils: Acidic and calcareous. Chemosphere, 239, p.124814. https://doi.org/10.1016/j.chemosphere.2019.124814
Jurik, T.W., Chabot, J.F. and Chabot, B.F., 1982. Effects of Light and Nutrients on Leaf Size, CO? Exchange, and Anatomy in Wild Strawberry (Fragaria virginiana). Plant Physiology, 70(4), pp.1044–1048.
Kalaji, H.M., Schansker, G., Ladle, R.J., Goltsev, V., Bosa, K., Allakhverdiev, S.I., Brestic, M., Bussotti, F., Calatayud, A., D?browski, P., Elsheery, N.I., Ferroni, L., Guidi, L., Hogewoning, S.W., Jajoo, A., Misra, A.N., Nebauer, S.G., Pancaldi, S., Penella, C., Poli, D., Pollastrini, M., Romanowska-Duda, Z.B., Rutkowska, B., Serôdio, J., Suresh, K., Szulc, W., Tambussi, E., Yanniccari, M. and Zivcak, M., 2014. Frequently asked questions about in vivo chlorophyll fluorescence: practical issues. Photosynthesis Research, 122(2), pp.121–158. https://doi.org/10.1007/s11120-014-0024-6
Kataria, S., Jain, M., Rastogi, A., Živ?ák, M., Brestic, M., Liu, S. and Tripathi, D.K., 2019. Chapter 6 - Role of Nanoparticles on Photosynthesis: Avenues and Applications. In: D.K. Tripathi, P. Ahmad, S. Sharma, D.K. Chauhan and N.K. Dubey, eds. Nanomaterials in Plants, Algae and Microorganisms. [online] Academic Press. pp.103–127. https://doi.org/10.1016/B978-0-12-811488-9.00006-8
Liu, R. and Lal, R., 2015. Potentials of engineered nanoparticles as fertilizers for increasing agronomic productions. The Science of the Total Environment, 514, pp.131–139. https://doi.org/10.1016/j.scitotenv.2015.01.104
Liu, Z., Zhang, M. and Yang, C., 2018. Dual extrusion 3D printing of mashed potatoes/strawberry juice gel. LWT, 96, pp.589–596. https://doi.org/10.1016/j.lwt.2018.06.014
Navarro, E., Baun, A., Behra, R., Hartmann, N.B., Filser, J., Miao, A.-J., Quigg, A., Santschi, P.H. and Sigg, L., 2008. Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi. Ecotoxicology, 17(5), pp.372–386. https://doi.org/10.1007/s10646-008-0214-0
Panwar, J., 2012. Positive effect of zinc oxide nanoparticles on tomato plants: A step towards developing nano-fertilizers. [online] Available at: https://www.semanticscholar.org/paper/Positive-effect-of-zinc-oxide-nanoparticles-on-A-Panwar/6b9a1be59474254906c6fbd3275bcad9d0014acf [Accessed 7 July 2023].
Rajput, V.D., Minkina, T., Fedorenko, A., Chernikova, N., Hassan, T., Mandzhieva, S., Sushkova, S., Lysenko, V., Soldatov, M.A. and Burachevskaya, M., 2021. Effects of Zinc Oxide Nanoparticles on Physiological and Anatomical Indices in Spring Barley Tissues. Nanomaterials, 11(7), p.1722. https://doi.org/10.3390/nano11071722
Reyes-Santamaría, M.I., Villegas-Monter, Á., Colinas-León, M.T. and Calderón-Zavala, G., 2000. Peso específico, contenido de proteína y de clorofila en hojas de naranjo y tangerino. Agrociencia, 34(1), pp.49–56.
Rivera-Gutiérrez, R.G., Preciado-Rangel, P., Fortis-Hernández, M., Betancourt-Galindo, R., Yescas-Coronado, P., Orozco-Vidal, J.A., Rivera-Gutiérrez, R.G., Preciado-Rangel, P., Fortis-Hernández, M., Betancourt-Galindo, R., Yescas-Coronado, P. and Orozco-Vidal, J.A., 2021. Zinc oxide nanoparticles and their effect on melon yield and quality. Revista Mexicana de Ciencias Agrícolas, 12(5), pp.791–803. https://doi.org/10.29312/remexca.v12i5.2987
Rossi, L., Fedenia, L.N., Sharifan, H., Ma, X. and Lombardini, L., 2019. Effects of foliar application of zinc sulfate and zinc nanoparticles in coffee (Coffea arabica L.) plants. Plant Physiology and Biochemistry, 135, pp.160–166. https://doi.org/10.1016/j.plaphy.2018.12.005
Saini, S., Kumar, P., Sharma, N.C., Sharma, N. and Balachandar, D., 2021. Nano-enabled Zn fertilization against conventional Zn analogues in strawberry (Fragaria × ananassa Duch.). Scientia Horticulturae, 282, p.110016. https://doi.org/10.1016/j.scienta.2021.110016
Salam, A., Khan, A.R., Liu, L., Yang, S., Azhar, W., Ulhassan, Z., Zeeshan, M., Wu, J., Fan, X. and Gan, Y., 2022. Seed priming with zinc oxide nanoparticles downplayed ultrastructural damage and improved photosynthetic apparatus in maize under cobalt stress. Journal of Hazardous Materials, 423, p.127021. https://doi.org/10.1016/j.jhazmat.2021.127021
Tarafdar, J.C., Raliya, R., Mahawar, H. and Rathore, I., 2014. Development of Zinc Nanofertilizer to Enhance Crop Production in Pearl Millet (Pennisetum americanum). Agricultural Research, 3(3), pp.257–262. https://doi.org/10.1007/s40003-014-0113-y
Wang, X., Yang, X., Chen, S., Li, Q., Wang, W., Hou, C., Gao, X., Wang, L. and Wang, S., 2016. Zinc Oxide Nanoparticles Affect Biomass Accumulation and Photosynthesis in Arabidopsis. Frontiers in Plant Science, [online] 6, p.1243. https://doi.org/10.3389/fpls.2015.01243
Wang, X.P., Li, Q.Q., Pei, Z.M. and Wang, S.C., 2018. Effects of zinc oxide nanoparticles on the growth, photosynthetic traits, and antioxidative enzymes in tomato plants. Biologia Plantarum, 62(4), pp.801–808. https://doi.org/10.1007/s10535-018-0813-4
Yang, W., Wang, Y., Zhao, F., Ding, Z., Zhang, X., Zhu, Z. and Yang, X., 2014. Variation in copper and zinc tolerance and accumulation in 12 willow clones: implications for phytoextraction. Journal of Zhejiang University. Science. B, 15(9), pp.788–800. https://doi.org/10.1631/jzus.B1400029
Yusefi-Tanha, E., Fallah, S., Rostamnejadi, A. and Pokhrel, L.R., 2020. Zinc oxide nanoparticles (ZnONPs) as a novel nanofertilizer: Influence on seed yield and antioxidant defense system in soil grown soybean (Glycine max cv. Kowsar). Science of The Total Environment, 738, p.140240. https://doi.org/10.1016/j.scitotenv.2020.140240
Zhao, L., Peralta-Videa, J.R., Rico, C.M., Hernandez-Viezcas, J.A., Sun, Y., Niu, G., Servin, A., Nunez, J.E., Duarte-Gardea, M. and Gardea-Torresdey, J.L., 2014. CeO2 and ZnO Nanoparticles Change the Nutritional Qualities of Cucumber (Cucumis sativus). Journal of Agricultural and Food Chemistry, 62(13), pp.2752–2759. https://doi.org/10.1021/jf405476u
URN: http://www.revista.ccba.uady.mx/urn:ISSN:1870-0462-tsaes.v27i3.50577
DOI: http://dx.doi.org/10.56369/tsaes.5057
Copyright (c) 2024 DANIEL PADILLA PADILLA CHACON
This work is licensed under a Creative Commons Attribution 4.0 International License.