FOLIAR AND SUBSTRATE APPLICATION OF ZINC OXIDE NANOPARTICLES AND ZN-EDTA ON THE PHYSIOLOGY AND PRODUCTION OF STRAWBERRY FRUITS (Fragaria x ananassa Duch)

Daniel Padilla Chacon, Maria Elena Loera-Alvarado, Alberto Enrique Becerril-Román, Ciro Velazco Cruz, Hilda Araceli Zavaleta-Mancera, Guillermo Calderon Zavala

Abstract


Background: Zinc oxide nanoparticles (ZnO NPs) are one of the most used nanomaterials as fertilization source and they have favorable results in growing and the whole development in several crops. However, their effects on the plant physiological processes are contradictory. Objective: To evaluate the physiological effects of the use of zinc oxide nanoparticles and two application methods on physiology and productivity in strawberry crop. Methodology: ZnO NPs (100, 200, 500, 1000 mg L-1) and Zn-EDTA through substrate and foliar way, using an increased factorial design completely randomized with four replicates per treatment. Gases interchange, foliar area, specific weight, quantum efficiency of photosystem II and fruit production were determined. Results. 200 mg L-1 per foliar application increased the net assimilation rate by 34% compared to treatment with Zn-EDTA. These results were consistent with the 16% increase in leaf area per plant; however, it was shown that foliar application with 500 and 1000 mg L-1 of nanoparticles affects the efficiency of photosystem II. Implications: These results provide knowledge about the physiological effect of zinc oxide nanoparticles applied as a fertilization source. Conclusion: The foliar application of 200 mg L-1 of ZnO NPs proved to be the most efficient concentration to increase the net assimilation rate and leaf area. Chlorophyll fluorescence results indicated that the use of ZnO NPs at concentrations of 500 and 1000 mg L-1 applied foliarly, affected the photochemical efficiency of photosystem II. 

Keywords


fertilization; application methods; photosynthesis; photosystem II.

Full Text:

PDF

References


Adhikari, T., Kundu, S., Biswas, A.K., Tarafdar, J.C. and Subba Rao, A., 2015. Characterization of Zinc Oxide Nano Particles and Their Effect on Growth of Maize (Zea mays L.) Plant. Journal of Plant Nutrition, 38(10), pp.1505–1515. https://doi.org/10.1080/01904167.2014.992536

Al Jabri, H., Saleem, M.H., Rizwan, M., Hussain, I., Usman, K. and Alsafran, M., 2022. Zinc Oxide Nanoparticles and Their Biosynthesis: Overview. Life (Basel, Switzerland), 12(4), p.594. https://doi.org/10.3390/life12040594

Ali, S., Rizwan, M., Noureen, S., Anwar, S., Ali, B., Naveed, M., Abd Allah, E.F., Alqarawi, A.A. and Ahmad, P., 2019. Combined use of biochar and zinc oxide nanoparticle foliar spray improved the plant growth and decreased the cadmium accumulation in rice (Oryza sativa L.) plant. Environmental Science and Pollution Research International, 26(11), pp.11288–11299. https://doi.org/10.1007/s11356-019-04554-y

Amezcua Romero, J.C. and Lara Flores, M., 2017. El zinc en las plantas. Ciencia - Academia Mexicana de Ciencias, 68(3), pp.28–35.

Anu Mary Ealia, S. and Saravanakumar, M.P., 2017. A review on the classification, characterisation, synthesis of nanoparticles and their application. IOP Conference Series: Materials Science and Engineering, 263, p.032019. https://doi.org/10.1088/1757-899X/263/3/032019

Awan, S., Shahzadi, K., Javad, S., Tariq, A., Ahmad, A. and Ilyas, S., 2021. A preliminary study of influence of zinc oxide nanoparticles on growth parameters of Brassica oleracea var italic. Journal of the Saudi Society of Agricultural Sciences, 20(1), pp.18–24. https://doi.org/10.1016/j.jssas.2020.10.003

Burman, U., Saini, M. and Kumar, P.-, 2013. Effect of zinc oxide nanoparticles on growth and antioxidant system of chickpea seedlings. Toxicological & Environmental Chemistry, 95(4), pp.605–612. https://doi.org/10.1080/02772248.2013.803796

Faizan, M., Bhat, J.A., Chen, C., Alyemeni, M.N., Wijaya, L., Ahmad, P. and Yu, F., 2021. Zinc oxide nanoparticles (ZnO-NPs) induce salt tolerance by improving the antioxidant system and photosynthetic machinery in tomato. Plant Physiology and Biochemistry: PPB, 161, pp.122–130. https://doi.org/10.1016/j.plaphy.2021.02.002

Faizan, M., Faraz, A., Yusuf, M., Khan, S.T. and Hayat, S., 2018. Zinc oxide nanoparticle-mediated changes in photosynthetic efficiency and antioxidant system of tomato plants. Photosynthetica, 56(2), pp.678–686. https://doi.org/10.1007/s11099-017-0717-0

García-Gómez, C., García-Gutiérrez, S., Obrador, A. and Fernández, M.D., 2020. Study of Zn availability, uptake, and effects on earthworms of zinc oxide nanoparticle versus bulk applied to two agricultural soils: Acidic and calcareous. Chemosphere, 239, p.124814. https://doi.org/10.1016/j.chemosphere.2019.124814

Jurik, T.W., Chabot, J.F. and Chabot, B.F., 1982. Effects of Light and Nutrients on Leaf Size, CO? Exchange, and Anatomy in Wild Strawberry (Fragaria virginiana). Plant Physiology, 70(4), pp.1044–1048.

Kalaji, H.M., Schansker, G., Ladle, R.J., Goltsev, V., Bosa, K., Allakhverdiev, S.I., Brestic, M., Bussotti, F., Calatayud, A., D?browski, P., Elsheery, N.I., Ferroni, L., Guidi, L., Hogewoning, S.W., Jajoo, A., Misra, A.N., Nebauer, S.G., Pancaldi, S., Penella, C., Poli, D., Pollastrini, M., Romanowska-Duda, Z.B., Rutkowska, B., Serôdio, J., Suresh, K., Szulc, W., Tambussi, E., Yanniccari, M. and Zivcak, M., 2014. Frequently asked questions about in vivo chlorophyll fluorescence: practical issues. Photosynthesis Research, 122(2), pp.121–158. https://doi.org/10.1007/s11120-014-0024-6

Kataria, S., Jain, M., Rastogi, A., Živ?ák, M., Brestic, M., Liu, S. and Tripathi, D.K., 2019. Chapter 6 - Role of Nanoparticles on Photosynthesis: Avenues and Applications. In: D.K. Tripathi, P. Ahmad, S. Sharma, D.K. Chauhan and N.K. Dubey, eds. Nanomaterials in Plants, Algae and Microorganisms. [online] Academic Press. pp.103–127. https://doi.org/10.1016/B978-0-12-811488-9.00006-8

Liu, R. and Lal, R., 2015. Potentials of engineered nanoparticles as fertilizers for increasing agronomic productions. The Science of the Total Environment, 514, pp.131–139. https://doi.org/10.1016/j.scitotenv.2015.01.104

Liu, Z., Zhang, M. and Yang, C., 2018. Dual extrusion 3D printing of mashed potatoes/strawberry juice gel. LWT, 96, pp.589–596. https://doi.org/10.1016/j.lwt.2018.06.014

Navarro, E., Baun, A., Behra, R., Hartmann, N.B., Filser, J., Miao, A.-J., Quigg, A., Santschi, P.H. and Sigg, L., 2008. Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi. Ecotoxicology, 17(5), pp.372–386. https://doi.org/10.1007/s10646-008-0214-0

Panwar, J., 2012. Positive effect of zinc oxide nanoparticles on tomato plants: A step towards developing nano-fertilizers. [online] Available at: https://www.semanticscholar.org/paper/Positive-effect-of-zinc-oxide-nanoparticles-on-A-Panwar/6b9a1be59474254906c6fbd3275bcad9d0014acf [Accessed 7 July 2023].

Rajput, V.D., Minkina, T., Fedorenko, A., Chernikova, N., Hassan, T., Mandzhieva, S., Sushkova, S., Lysenko, V., Soldatov, M.A. and Burachevskaya, M., 2021. Effects of Zinc Oxide Nanoparticles on Physiological and Anatomical Indices in Spring Barley Tissues. Nanomaterials, 11(7), p.1722. https://doi.org/10.3390/nano11071722

Reyes-Santamaría, M.I., Villegas-Monter, Á., Colinas-León, M.T. and Calderón-Zavala, G., 2000. Peso específico, contenido de proteína y de clorofila en hojas de naranjo y tangerino. Agrociencia, 34(1), pp.49–56.

Rivera-Gutiérrez, R.G., Preciado-Rangel, P., Fortis-Hernández, M., Betancourt-Galindo, R., Yescas-Coronado, P., Orozco-Vidal, J.A., Rivera-Gutiérrez, R.G., Preciado-Rangel, P., Fortis-Hernández, M., Betancourt-Galindo, R., Yescas-Coronado, P. and Orozco-Vidal, J.A., 2021. Zinc oxide nanoparticles and their effect on melon yield and quality. Revista Mexicana de Ciencias Agrícolas, 12(5), pp.791–803. https://doi.org/10.29312/remexca.v12i5.2987

Rossi, L., Fedenia, L.N., Sharifan, H., Ma, X. and Lombardini, L., 2019. Effects of foliar application of zinc sulfate and zinc nanoparticles in coffee (Coffea arabica L.) plants. Plant Physiology and Biochemistry, 135, pp.160–166. https://doi.org/10.1016/j.plaphy.2018.12.005

Saini, S., Kumar, P., Sharma, N.C., Sharma, N. and Balachandar, D., 2021. Nano-enabled Zn fertilization against conventional Zn analogues in strawberry (Fragaria × ananassa Duch.). Scientia Horticulturae, 282, p.110016. https://doi.org/10.1016/j.scienta.2021.110016

Salam, A., Khan, A.R., Liu, L., Yang, S., Azhar, W., Ulhassan, Z., Zeeshan, M., Wu, J., Fan, X. and Gan, Y., 2022. Seed priming with zinc oxide nanoparticles downplayed ultrastructural damage and improved photosynthetic apparatus in maize under cobalt stress. Journal of Hazardous Materials, 423, p.127021. https://doi.org/10.1016/j.jhazmat.2021.127021

Tarafdar, J.C., Raliya, R., Mahawar, H. and Rathore, I., 2014. Development of Zinc Nanofertilizer to Enhance Crop Production in Pearl Millet (Pennisetum americanum). Agricultural Research, 3(3), pp.257–262. https://doi.org/10.1007/s40003-014-0113-y

Wang, X., Yang, X., Chen, S., Li, Q., Wang, W., Hou, C., Gao, X., Wang, L. and Wang, S., 2016. Zinc Oxide Nanoparticles Affect Biomass Accumulation and Photosynthesis in Arabidopsis. Frontiers in Plant Science, [online] 6, p.1243. https://doi.org/10.3389/fpls.2015.01243

Wang, X.P., Li, Q.Q., Pei, Z.M. and Wang, S.C., 2018. Effects of zinc oxide nanoparticles on the growth, photosynthetic traits, and antioxidative enzymes in tomato plants. Biologia Plantarum, 62(4), pp.801–808. https://doi.org/10.1007/s10535-018-0813-4

Yang, W., Wang, Y., Zhao, F., Ding, Z., Zhang, X., Zhu, Z. and Yang, X., 2014. Variation in copper and zinc tolerance and accumulation in 12 willow clones: implications for phytoextraction. Journal of Zhejiang University. Science. B, 15(9), pp.788–800. https://doi.org/10.1631/jzus.B1400029

Yusefi-Tanha, E., Fallah, S., Rostamnejadi, A. and Pokhrel, L.R., 2020. Zinc oxide nanoparticles (ZnONPs) as a novel nanofertilizer: Influence on seed yield and antioxidant defense system in soil grown soybean (Glycine max cv. Kowsar). Science of The Total Environment, 738, p.140240. https://doi.org/10.1016/j.scitotenv.2020.140240

Zhao, L., Peralta-Videa, J.R., Rico, C.M., Hernandez-Viezcas, J.A., Sun, Y., Niu, G., Servin, A., Nunez, J.E., Duarte-Gardea, M. and Gardea-Torresdey, J.L., 2014. CeO2 and ZnO Nanoparticles Change the Nutritional Qualities of Cucumber (Cucumis sativus). Journal of Agricultural and Food Chemistry, 62(13), pp.2752–2759. https://doi.org/10.1021/jf405476u




URN: http://www.revista.ccba.uady.mx/urn:ISSN:1870-0462-tsaes.v27i3.50577

DOI: http://dx.doi.org/10.56369/tsaes.5057



Copyright (c) 2024 DANIEL PADILLA PADILLA CHACON

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.