FOREST LITTER PRODUCTION VARIES WITH SEASON AND ELEVATION GRADIENT IN CHIAPAS, MEXICO

Roldan Ruiz-Corzo, Deb Raj Aryal, Andrea Venegas-Sandoval, Emmanuel Díaz-Nigenda, Carlos A. Velazquez-Sanabria

Abstract


Background. Forest litterfall is a fundamental process of ecosystem nutrient cycling, also, it is a source of energy for the development and propagation of wildfire. Understanding the temporal dynamics of litter production and storage is critical for sustainable management and conservation of forest ecosystems. Objective. To quantify the monthly production and storage of forest litter in an elevation gradient. Methodology. We selected forest sites at three elevations: 670, 775, and 1010 masl, corresponding to pine, oak, and tropical lowland forest ecosystems in Nambiyugua hill, Chiapas, Mexico. Sixteen sampling sites with a radius of 11.28 m were established for tree measurements, and 48 litter traps of 0.50 m2 were installed to collect monthly litterfall for a year. To sample ground litter eight 30 by 30 cm2 quadrats were used in each site. The fallen woody material was measured with the planar intersection method. Litter samples were oven-dried at 60 °C for 72 h and separated into leaves and other plant parts. One-way ANOVA was used to test the significant differences between forests. Results. The highest total loads of litter and fallen woody material were obtained in the pine forests of upper elevation with 29.01 t ha-1. The highest litter production was obtained in January and April, with a mean of 1.34 ± 0.19 and 0.74 ± 0.13 t ha-1 respectively in pine forests. In the oak forest, the highest production occurred in March, with 1.08 ± 0.25 t ha-1; while the lowland forest reached the highest production in January with 0.85 ± 0.26 t ha-1, with a decreasing trend in June. Implications. Understanding the seasonal variability in litter production and forest fuel loads is crucial for forest productivity, carbon sequestration, and wildfire prevention Conclusions. The production of forest fuels was different among the ecosystems representing the elevation gradients. The highest monthly production of litter was registered during the January-May period for the pine and oak ecosystems but in November - January in tropical lowland forests.

Keywords


Forest ecosystems; biomass storage; litter production; fallen woody material; pine forests; tropical forests

Full Text:

PDF

References


Agne, MC., Fontaine, JB., Enright, NJ., Bisbing, SM., and Harvey, BJ., 2022. Demographic processes underpinning post-fire resilience in California closed-cone pine forests: the importance of fire interval, stand structure, and climate. Plant Ecology, 223(7), pp. 751-767. https://doi.org/10.1007/s11258-022-01228-7

Aryal, DR., De Jong, BHJ., Ochoa, GS., Mendoza, VJ. and Esperanza, OL., 2015. Successional and seasonal variation in litterfall and associated nutrient transfer in semi-evergreen tropical forests of SE Mexico. Nutrient Cycling in Agroecosystems, 103: 45-60. http://dx.doi.org/10.1007/s10705-015-9719-0

Aryal, DR., De Jong, BHJ., Ochoa-Gaona, S., Mendoza-Vega, J., Esparza-Olguín, L., López-CCruz, S., 2022. Fine wood decomposition rates decline with the age of tropical successional forests in southern Mexico: Implications to ecosystem carbon storage. Ecosystems, 25, pp. 661–677. https://doi.org/10.1007/s10021-021-00678-w

Aryal, DR., Morales-Ruiz, DE., López-Cruz, S., Tondopó-Marroquín, CN., Lara-Nucamendi, A., Jiménez-Trujillo, J A., Pérez-Sánchez, E., Betanzos?Simon, JE., Casasola?Coto, F., Martínez?Salinas, A., Sepúlveda?López, CJ., Ramírez?Díaz, R., La O Arias, MA., Guevara?Hernández, F., Pinto?Ruiz, R., and Ibrahim, M., 2022. Silvopastoral systems and remnant forests enhance carbon storage in livestock-dominated landscapes in Mexico. Scientific Reports, 12(1), pp. 1-18. https://doi.org/10.1038/s41598-022-21089-4

Becker, J., Pabst., H, Mnyonga, J. and Kuzyakov, Y., 2015. Annual litterfall dynamics and nutrient deposition depending on elevation and land use at Mt. Kilimanjaro. Biogeosciences, 12(19), pp. 5635-5646. http://dx.doi.org/10.5194/bg-12-5635-2015

Brown, JK. and Roussopoulos, PJ., 1974. Eliminating biases in the planar intersect method for estimating volumes of small fuels. Forest Science, 20 pp. 350-356.Retrieved from: http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=PASCAL7538012311

Brown, JK., 1974. Handbook of inventorying downed woody material. U.S. Department of Agriculture, Forest Service. pp. 1-32. Retrieved from: https://www.fs.usda.gov/research/treesearch/28647

Cepeda, M., Lasch, C., Núñez, JO., Morales, M. and González, J., 2010. Planeación para la Conservación del Cerro Nambiyugua: Un Esfuerzo Conjunto para su Protección. The Nature Conservancy, Comisión Nacional de Áreas Naturales Protegidas y Servicio Forestal de los EE. UU. A. Mérida, Yucatán, México. pp. 46.

Chávez, DÁA., Xelhuantzi, CJ., Rubio, CEA., Villanueva, DJ., Flores, LHE., and Mora OCDL., 2016. Caracterización de cargas de combustibles forestales para el manejo de reservorios de carbono y la contribución al cambio climático. Revista Mexicana de Ciencias Agrícolas, 7(Número especial), pp. 2589-2600. Retrieved from: https://www.scielo.org.mx/pdf/remexca/v7nspe13/2007-0934-remexca-7-spe13-2589.pdf

Chen, B, Yang, Y., Chen, L., Jiang, L., Hong Y., Zhu, J., Liu, J., Xu, D., Kuang, K., and He Z., 2023. Microclimate along an elevational gradient controls foliar litter cellulose and lignin degradation in a subtropical forest. Frontiers in Forests and Global Change, 6(1134598), pp. 1-13. http://dx.doi.org/10.3389/ffgc.2023.1134598

CONANP (Comisión Nacional de Áreas Naturales Protegidas), 2012. Estudio previo justificativo para el establecimiento del Área de Protección de flora y fauna “Cerro Nambiyugua”, en el Estado de Chiapas, México. Comisión Nacional de Áreas Naturales Protegidas, México. Retrieved from https://www.conanp.gob.mx/datos_abiertos/DGCD/29.pdf [Accessed 23 June 2023].

Cruz, PC., Juárez, WS., Santiago, DM., Santiago, OLC., Silva, ERP., and Calderón, OAA., 2018. Combustibles forestales y susceptibilidad a incendios de un bosque templado en la Mixteca Alta, Oaxaca, México. Foresta Veracruzana, 20(1), pp. 9-14. Retrieved from: https://www.redalyc.org/journal/497/49757295003/49757295003.pdf

Fernández, ZKS., 2022. Dinámica del almacenamiento de carbono en un ecosistema de pino (Pinus oocarpa Schiede) en Villaflores, Chiapas. Tesis de Licenciatura para obtener el grado de Ingeniero en Desaroollo Agroambiental. Facultad de Ciencias Agronómicas, Campus V, de la Universidad Autónoma de Chiapas. Villaflores, Chiapas. pp. 97.

González-Rodríguez, H., López-Hernández, J. M., Ramírez-Lozano, RG., Gómez-Meza, MV., Cantú-Silva, I., Sarquís-Ramírez, JI. and Mora-Olivo, A., 2019. Litterfall deposition and nutrient return in pine-oak forests and scrublands in northeastern Mexico. Madera y Bosques, 25(3), pp. 1-16. http://dx.doi: 10.21829/myb.2019.2531514

Gutiérrez, VBN., Gómez, CM., Valencia, MS., Cornejo, OEH., Prieto, RJA. and Gutiérrez, VMH., 2010. Variación de la densidad de la madera en poblaciones naturales de Pinus oocarpa Schiede del estado de Chiapas, México. Revista Fitotecnia Mexicana, 33 (Número especial 4), pp. 75-78. Retrieved from: https://www.scielo.org.mx/pdf/rfm/v33nspe4/v33nspe4a15.pdf

Honorio EN. and Baker TR., 2010. Manual para el monitoreo del ciclo del carbono en bosques amazónicos. Instituto de investigaciones de la Amazonia Peruana. Universidad de Leeds, 11, pp. 945-958. Retrieved from: https://rainfor.org/wp-content/uploads/sites/129/2022/06/Honorio_Baker2010-Manual-carbono.pdf

INEGI (Instituto Nacional de Estadística y Geografía), 2013. Conjunto Nacional de Uso de Suelo y Vegetación a escala 1: 250,000, Serie V. Instituto Nacional de Estadística Geografía. México. Retrieved from: https://www.inegi.org.mx/app/biblioteca/ficha.html?upc=702825570149. [Accessed 7 December 2015]

INEGI (Instituto Nacional de Estadística y Geografía), 2018. Áreas geoestadísticas municipales, Junio 2018. Escala: 1:250000. 1ra edición. Instituto Nacional de Estadística y Geografía. Aguascalientes, México. Retrieved from: http://www.conabio.gob.mx/informacion/metadata/gis/muni_2018gw.xml?. [Accessed 12 June 2019].

INFyS (Inventario Nacional Forestal y de Suelos), 2010. Manual y procedimientos para el muestreo de campo. Comisión Nacional Forestal (CONAFOR), Guadalajara, Jalisco, México. pp. 140. Retrieved from: https://www.conafor.gob.mx/apoyos/docs/externos/2022/DocumentosMetodologicos/2011/Manual_remuestreo_2011.pdf

Jaramillo, VJ., Murray-Tortarolo, G., Martínez-Yrízar, A., Maass, M., Sarukhán, J., Nava-Mendoza, M. and Araiza, S., 2023. Divergent litterfall nutrient responses to rainfall seasonality revealed through long-term observations in a tropical dry forest. Journal of Tropical Ecology, 39(e25), pp. 1-8. https://doi.org/10.1017/S0266467423000159.

Jardel, PEJ, Quintero, GSD, Lomelí, JAJ, Graf, PJD., and Rodríguez, GJM., 2018. Generación de modelos de comportamiento del fuego para los tipos de combustibles forestales de México. Reporte del Proyecto:" Caracterización y clasificación de combustibles para generar y validar modelos de combustibles forestales para México”. CONAFOR-CONACyT, Mexico. pp. 31. Retrieved from: https://old-snigf.cnf.gob.mx/wp-content/uploads/Incendios/Insumos%20Manejo%20Fuego/Modelos%20combustibles/Modelos%20combustibles.pdf

López-Hernández, JM, González-Rodríguez, H, Ramírez-Lozano, RG, Cantú-Silva, I, Gómez-Meza, MV, Pando-Moreno, M, Estrada-Castillón, AE., 2013. Producción de hojarasca y retorno potencial de nutrientes en tres sitios del estado de Nuevo León, México. Polibotánica, (35), pp. 41-64. Retrieved from: https://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S1405-27682013000100003

López-Hernández, JM., González-Rodríguez, H., Cantú-SilvaI, MV., Gómez-Meza, AE., Estrada-Castillón, NL., Contreras-Guajardo., and del Valle-Arango JI., 2022. Caída de hojarasca y retorno de nutrientes en diferentes comunidades vegetales del Noreste de México. Ecosistemas y Recursos Agropecuarios, 9(1):e2891, pp. 1-14. https://doi.org/10.19136/era.a9n1.2891.

Martínez-Alonso, C., Valladares, F., Camarero, JJ., Arias, ML., Serrano, M., and Rodríguez, JA., 2007. The uncoupling of secondary growth, cone and litter production by intradecadal climatic variability in a Mediterranean Scots pine forest. Forest Ecology and Management, 253 (1-3), pp. 19-29. https:// doi:10.1016/j.foreco.2007.06.043

Neger, C., 2021. Causas antrópicas de los incendios forestales en la sierra de los Tuxtlas, México. Edgar Serna M. (ed. Lit.), Universidad Nacional Autónoma de México. pp. 376-393. Retrieved from: https://dialnet.unirioja.es/servlet/articulo?codigo=8734799.

Neri-Pérez, AC., Rodríguez-Trejo, DA., and Contreras-Aguado, R., 2009. Inflamabilidad de combustibles forestales en las selvas de Calakmul, Campeche. Universidad y Ciencia, 25(2), pp. 121-132. Retrieved from: https://www.scielo.org.mx/pdf/uc/v25n2/v25n2a2.pdf

Ordóñez, DJAB., Galicia, NA., Venegas, MNJ., Hernández, TT., Ordóñez, DMDJ., and Dávalos-Sotelo, R., 2015. Densidad de las maderas mexicanas por tipo de vegetación con base en la clasificación de J. Rzedowski: compilación. Madera y Bosques, 21(Número especial), 77-216. Retrieved from: https://www.scielo.org.mx/pdf/mb/v21nspe/v21nspea6.pdf

Ostertag, R., Restrepo, C., Dalling, JW., Martin, PH., Abiem, I., Aiba, SI., and Williams, CB., 2022. Litter decomposition rates across tropical montane and lowland forests are controlled foremost by climate. Biotropica, 54(2), pp. 309-326. https://doi.org/10.1111/btp.13044.

Pyne, SJ., 2019. Fire: A brief history. Second edition University of Washington Press. pp 216. ISBN: 978-0-295-74618-0

R Core Team, 2023. _R: A Language and Environment for Statistical Computing. Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/

Reyes, G, Brown, S, Jonathan, L. and Ariel E., 1992. Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. pp. 1-15. Retrieved from: https://www.fs.usda.gov/research/treesearch/1236

Rocha-Loredo, AG. and Ramírez-Marcial N., 2009. Producción y descomposición de hojarasca en diferentes condiciones sucesionales del bosque de pino-encino en Chiapas, México. Boletín de la Sociedad Botánica de México, 84 pp. 1-12. Retrieved from: https://www.scielo.org.mx/pdf/bsbm/n84/n84a1.pdf

Rodríguez-Trejo, DA., Martínez-Muñoz, P., Pulido-Luna., JA, Martínez-Lara., PJ., and Cruz-López, JD., 2020. Combustibles, comportamiento del fuego y emisiones en un pastizal y una sabana artificiales en Chiapas, México. Revista de Biología Tropical, 68(2), pp. 641-654.Retrieved from: https://www.scielo.sa.cr/pdf/rbt/v68n2/0034-7744-rbt-68-02-641.pdf

Ruiz-Corzo, R, Aryal DR, Venegas-Sandoval, A, Jerez-Ramírez, DO, Fernández-Zúñiga, KS, López-Cruz, S, López-Hernández, JC, Peña-Alvarez, B, Velázquez-Sanabria, C., 2022. Dinámica temporal de combustibles forestales y efecto del incendio en Cerro Nambiyugua, Chiapas, México. Ecosistemas y Recursos Agropecuarios, 9(2): e3253, pp. 1-12. http://dx.doi.org/10.19136/era.a9n2.3253

Sánchez-Silva, S., De Jong, BH., Esperanza, HL., Jorge, MV., Danilo, MR., and Aryal, DR., 2022. Fine root biomass stocks but not the production and turnover rates vary with the age of tropical successional forests in Southern Mexico. Rhizosphere, 21, 100474. pp. 1-42. https://doi.org/10.1016/j.rhisph.2022.100474

Sánchez-Silva, S., De Jong BH, Aryal., DR, Huerta-Lwanga E., and Mendoza-Vega, J., 2018. Trends in leaf traits, litter dynamics and associated nutrient cycling along a secondary successional chronosequence of semi-evergreen tropical forest in South-Eastern Mexico. Journal of Tropical Ecology, 34(6), pp. 364-377. https://doi.org/10.1017/S0266467418000366.

Scheer, MB, Gatti, G, Wisniewski, C., 2011. Nutrient fluxes in litterfall of a secondary successional alluvial rain forest in Southern Brazil. Revista Biología Tropical, 59(4), pp. 1869-1882. Retrieved from: https://www.scielo.sa.cr/pdf/rbt/v59n4/a36v59n4.pdf

Takeda, S., and Takahashi, K., 2020. Elevational variation in abundance of coarse woody debris in subalpine forests, central Japan. Forest Ecology and Management, 473, pp. 118-295. https://doi.org/10.1016/j.foreco.2020.118295.

Tan, B., Yin, R., Zhang, J., Xu, Z., Liu, Y., He, S., and Peng, C., 2021. Temperature and moisture modulate the contribution of soil fauna to litter decomposition via different pathways. Ecosystems, 24, pp. 1142-1156. https://doi.org/10.1007/s10021-020-00573-w

Van Wagner, CE., 1982. Practical aspects of the line intersect method. Canadian Forestry Service, Maritimes Forest Research Centre, Fredericton, New Brunswick. Information Report PI-X-12E. Canada. pp. 1-11. Retrieved from: https://cfs.nrcan.gc.ca/publications?id=6862

Williams-Linera, G., Bonilla-Moheno, M., López-Barrera, F., and Tolome, J., 2021. Litterfall, vegetation structure and tree composition as indicators of functional recovery in passive and active tropical cloud forest restoration. Forest Ecology and Management, 493, pp. 119-260. https://doi.org/10.1016/j.foreco.2021.119260.

Wong, GJC., and Villers, RM., 2007. Evaluación de combustibles y su disponibilidad en incendios forestales: un estudio en el Parque Nacional La Malinche. Investigaciones Geográficas, 62, pp. 87-103. Retrieved from: https://www.scielo.org.mx/pdf/igeo/n62/n62a6.pdf

Xelhuantzi, CJ, Flores, GJG. and Chávez, DÁA., 2011. Análisis comparativo de cargas de combustibles en ecosistemas forestales afectados por incendios. Revista Mexicana de Ciencias Forestales, 2, pp. 37-52. Retrieved from: https://www.scielo.org.mx/pdf/remcf/v2n3/v2n3a4.pdf

Zhou, Y., Su, J., Janssens, IA., Zhou, G. and Xiao, C., 2014. Fine root and litterfall dynamics of three Korean pine (Pinus koraiensis) forests along an altitudinal gradient. Plant and soil, 374, pp. 19-32. https://doi.org10.1007/s11104-013-1816-8/




URN: http://www.revista.ccba.uady.mx/urn:ISSN:1870-0462-tsaes.v27i1.50535

DOI: http://dx.doi.org/10.56369/tsaes.5053



Copyright (c) 2023 Roldan Ruiz-Corzo, Deb Raj Aryal, Andrea Venegas-Sandoval, Emmanuel Díaz-Nigenda, Carlos A. Velazquez-Sanabria

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.