ANTIBACTERIAL ACTIVITY AND VIRULENCE FACTORS INHIBITION BY Xylaria sp. (Xylariaceae, Ascomycota): A STUDY OF BIOACTIVE POTENTIAL

Daniela Luis Yong, Oswaldo Guzmán López, Alejandro Salinas Castro, Elmira San Martín Romero, Juan José Zamora Palma, Jorge Ricaño Rodríguez

Abstract


Background: The genus Xylaria comprises over 300 fungal species distributed worldwide that exhibit adaptability to various ecological roles. Consequently, their potential for the synthesis of bioactive molecules with antibacterial and antivirulence properties has been reported. Objective: To characterize the antibacterial and antivirulence properties of Xylaria sp. (OG-03) strain against phytopathogenic bacteria (Pseudomonas syringae, Pseudomonas syringae pv. tabaci, Pseudomonas putida, and Chryseobacterium sp.) and Chromobacterium violaceum 553, respectively. Methodology: A fungal strain was isolated and characterized morphologically and molecularly, and its evolutionary history was investigated through phylogenetic reconstruction. Mycelial growth was assessed in different culture media with natural substrates, and fungal extracts were obtained to evaluate minimal inhibitory (phytopathogenic bacteria) and antivirulence (biosensor strain) activities. Results: Morphological and molecular characterizations of the fungal strain suggested an indeterminate taxonomic classification at the species level within the genus Xylaria. The highest mycelial growth was observed in the REA culture medium, and the liquid rice extract promoted ectostomes proliferation. Fungal biomass extracts displayed antibacterial activity against P. syringae (MIC 7.81 µg/mL, 88% inhibition), Pseudomonas syringae pv. tabaci (MIC 1.95 µg/mL, 87% inhibition), Pseudomonas putida (MIC 1.95 µg/mL, 79.25% inhibition), and Chryseobacterium sp. (MIC 7.81 µg/mL, 85.03% inhibition), respectively. Antivirulence against C. violaceum reduced biofilm formation (125 µg/mL, 59% inhibition) and violacein production (62.5 µg/mL, 58% inhibition). Implications: Xylaria sp. exhibits antibacterial and antivirulence activity against phytopathogenic bacteria. Conclusions: The strain studied is suggested to be an undetermined taxon within the genus Xylaria. The results of biological assays indicated that the fungus possesses antibiotic properties against phytopathogenic bacteria and can inhibit virulence factors associated with quorum sensing.

Keywords


antivirulence; endophytic fungus; minimum inhibitory concentration; phylogenetic reconstruction; phytopathogenic bacteria

Full Text:

PDF

References


Ahmed, F.A. and Jahan, N., 2018. Optimization of culture condition, phytoconstituents and cytotoxicity of Xylaria hypoxylon (L.) Grev. Jahangirnagar University Journal of Biological Sciences, 6(2), pp.1-9. https://doi.org/10.3329/jujbs.v6i2.36585

Bhardwaj, A., Sharma, D., Jadon, N. and Agrawal, P.K., 2015. Antimicrobial and phytochemical screening of endophytic fungi isolated from spikes of Pinus rouxburghii. Archives of Clinical Microbiology, 6(3), pp.1-7.

Becerril-Navarrete, A.M., Gómez-Reyes, V.M., Palestina, E.N. and Medel-Ortiz, R., 2018. Nuevos registros de Xylaria (Xylariaceae) para el estado de Michoacán, México. Scientia Fungorum, 48, pp. 61-75. https://doi.org/10.33885/sf.2018.48.1199

Castillo-Juárez, J.I., García-Contreras, R., Velázquez, G.N., Soto, H.M. and Martínez, V.M., 2013. Amphypterygium adstringens anacardic acid mixture inhibits quorum sensing controlled virulence factors of Chromobacterium violaceum and Pseudomonas aeruginosa. Archives of Medical Research, 44(7), pp. 488-494. https://doi.org/10.1016/j.arcmed.2013.10.004

Dong, G., Chenzhe, L., Yan, S., Jiapeng, W., Chengyao, W., Li, Z., Yujun, Y., Jiaqi, L., Bijian, H., Le, C. and Zhongtao, D., 2023. Steroids and dihydroisocoumarin glycosides from Xylaria sp. by the one strain many compounds strategy and their bioactivitie. Chinese Journal of Natural Medicines, 21(2), pp. 154-160. https://doi.org/10.1016/S1875-5364(23)60394-2

Duca, D.R. and Glick B.R., 2020. Indole-3-acetic acid biosynthesis and its regulation in plant-associated bacteria. Applied Microbiology and Biotechnology, 104, pp. 8607¬-8619. https://doi.org/10.1007/s00253-020-10869-5

Felsenstein, J. 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution; International Journal of Organic Evolution, 39(4), pp. 783-791. https://doi.org/10.2307/2408678

Helaly, S., Thongbai, B. and Stadler M., 2018. Diversity of biologically active secondary metabolites from endophytic and saprotrophic fungi of the ascomycete order Xylariales. Natural Product Reports, 35, pp. 992-1014. https://doi.org/10.1039/C8NP00010G

Ichinose, Y., Watanabe, Y., Tumewu, S.A., Matsui, H., Yamamoto, M., Noutoshi, Y. and Toyoda, K., 2023. Requirement of chemotaxis and aerotaxis in host tobacco infection by Pseudomonas syringae pv. tabaci 6605. Physiological and Molecular Plant Pathology, 124, pp. 101970. https://doi.org/10.1016/j.pmpp.2023.101970

Indarmawan, T., Mustopa, A.Z., Budiarto, B.R. and Tarman, K., 2016. Antibacterial activity of extracellular protease isolated from an algicolous fungus Xylaria psidii KT30 against Gram-Positive bacteria. HAYATI Journal of Biosciences, 23(2), pp. 73-78. https://doi.org/10.1016/j.hjb.2016.06.005

Kathawut, S. and Siriluck I., 2020. Isolation and screening of extracellular enzymatic activity of endophytic fungi isolated from Thai orchids. South African Journal of Botany, 134, pp. 273-279. https://doi.org/10.1016/j.sajb.2020.02.005

Koch, R.A., Wilson, A.W., Sene, O., Henkel, T.W. and Aime, M.C., 2017. Resolved phylogeny and biogeography of the root pathogen Armillaria and its gasteroid relative, Guyanagaster. BMC Evolutionary Biology, 17(33), pp. 1-16. https://doi.org/10.1186/s12862-017-0877-3

Koch, R.A., Lodge, D.J., Sourell, S., Nakasone, K., McCoy, A.G. and Aime, M.C., 2018. Tying up loose threads: revised taxonomy and phylogeny of an avian-dispersed neotropical rhizomorph-forming fungus. Mycological Progress, 17, pp. 989–998. https://doi.org/10.1007/s11557-018-1411-8

Koley, S. and Mahapatra, S.S., 2015. Evaluation of culture media for growth characteristics of Alternaria solani, causing early blight of tomato. Journal of Plant Pathology and Microbiology, S1, 005. https://doi.org/10.4172/2157-7471.S1-005

Kumar, S., Stecher, G. and Tamura K., 2016. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology Evolution, 33(7), pp. 1870–1874. https://doi.org/10.1093/molbev/msw054

Lagunes, C.M., López, M.A., Ramos, L.A., Trigos, A., Salinas, A. and Espinoza C., 2015. Actividad antibacteriana de extractos metanol: cloroformo de hongos fitopatógenos. Revista Mexicana de Fitopatología, 33(1), pp. 87-94. https://www.scielo.org.mx/pdf/rmfi/v33n1/2007-8080-rmfi-33-01-00087-en.pdf

Lin, R.C., Ding, Z.S., Li, L.B. and Kuang, T.Y., 2001. A rapid and efficient DNA minipreparation suitable for screening transgenic plants. Plant Molecular Biology Report, 19, pp. 379. https://doi.org/10.1007/BF02772839

Liu, X., Dong, M., Chen, X., Jiang, M., Lv, X. and Zhou, J., 2008. Antimicrobial activity of an endophytic Xylaria sp. YX-28 and identification of its antimicrobial compound 7-amino-4-methylcoumarin. Applied Microbiology and Biotechnology, 78(2), pp. 241-247. https://doi.org/10.1007/s00253-007-1305-1

Long, H., Zhou, S., Li, L., Li, J. and Liu, J., 2023. Two new compounds from the fungus Xylaria nigripes. Molecules, 28, pp. 508. https://doi.org/ 10.3390/molecules28020508

López, M.K.S., Kalaw, S.P., Dulay, R.M.R., De Leon, A.M. and Reyes, R.G., 2022. Optimization of mycelial growth of Xylaria papulis Lloyd (Xylariaceae) in indigenous liquid culture conditions, science city of Muñoz, Nueva Ecija, Philippines. Studies in Fungi, 7, pp. 21 https://doi.org/10.48130/SIF-2022-0021

Ma, H., Zikun S., Xiaoyan P., Zhi Q., Zhanen Y., Yu L. and Anhong Z., 2022. Four new pale-spored species of Xylaria (Xylariaceae, Xylariales) with a key to worldwide species on fallen fruits and seeds. Biology, 11(6), pp. 885. https://doi.org/10.3390/biology11060885

Madeira, F., Pearce, M., Tivey, A.R.N., Basutkar, P., Lee, J., Edbali, O., Madhusoodanan, N., Kolesnikov, A. and Lopez, R., 2022. Search and sequence analysis tools services from EMBL-EBI in 2022. Nucleic Acids Research, 50(W1), pp. W276-W279. https://doi.org/10.1093/nar/gkac240

Maldonado-Bonilla, L.D., Hernández-Guzmán, G., Martínez-Gallardo, N.A., Hernández-Flores, J.L., Délano-Frier, J.P. and Valenzuela-Soto, J.H., 2018. Cepa de Pseudomonas syringae causante de la mancha bacteriana en cempasúchil (Tagetes erecta) en México. Revista Mexicana de Fitopatología, 39(3), pp. 493-502. https://doi.org/10.18781/r.mex.fit.2104-5

Medel, R., Castillo, R. and Guzmán, G., 2008. Las especies de Xylaria (Ascomycota, Xylariaceae) conocidas de Veracruz, México y discusión de nuevos registros. Revista Mexicana de Micología, 28, pp. 101-118. https://www.scielo.org.mx/pdf/rmm/v28nspe/v28nspea13.pdf

Navarro de la Fuente, L., Salinas-Castro, A. y Trigos, Á., 2022. Hongos endófitos aislados de Manilkara zapota y su actividad antibacteriana y antifúngica. Scientia Fungorum, 53, pp. 1-13. https://doi.org/ 10.33885/sf.2022.53.1407

Oliveira, C.M., Regasini, L.O., Silva, G.H., Pfenning, L.H., Young, M.C.M., Berlinck, R.G.S, Bolzani, V.S. and Araujo, A.R., 2011. Dihydroisocoumarins produced by Xylaria sp. and Penicillium sp., endophytic fungi associated with Piper aduncum and Alibertia macrophylla. Phytochemistry Letters, 4, pp. 93-96. https://doi.org/10.1016/j.phytol.2010.11.003

Oliveira, M. and Azevedo, L., 2022. Molecular markers: an overview of data published for fungi over the last ten years. Journal of Fungi, 8 (8), pp. 803. https://doi.org/10.3390/jof8080803

Osorio-Navarro, Y., Valenzuela, R., Bautista-Hernández, S., Mendoza-González, C., Mateo-Cid, L.E. and Raymundo, T., 2022. El género Xylaria (Xylariaceae, Ascomycota) en el bosque tropical caducifolio de México. Acta Botánica Mexicana, 129, pp. 1-27. https://doi.org/10.21829/abm129.2022.2025

Pattnaik, S., Ahmed, T., Ranganathan, S.K., Ampasala, D.R., Sarma, V.V. and Busi, S., 2018. Aspergillus ochraceopetaliformis SSP13 modulates quorum sensing regulated virulence and biofilm formation in Pseudomonas aeruginosa PAO1. Biofouling, 34(4), pp. 410-425. https://doi.org/10.1080/08927014.2018.1460748

Pérez-López, M., García-Contreras, R., Soto-Hernández, M., Rodríguez-Zavala, J.S., Martínez-Vázquez, M., Prado-Galbarro, F.J. and Castillo-Juárez, I., 2018. Antiquorum sensing activity of seed oils from oleaginous plants and protective effect during challenge with Chromobacterium violaceum. Journal of Medicinal Food, 21(4), pp. 356-363. https://doi:10.1089/jmf.2017.0080

Peter, S., Oberhettinger, P. and Schuele, L., 2017. Genomic characterisation of clinical and environmental Pseudomonas putida group strains and determination of their role in the transfer of antimicrobial resistance genes to Pseudomonas aeruginosa. BMC Genomics, 18, pp. 859. https://doi.org/10.1186/s12864-017-4216-2

Popio?ek, ?., Biernasiuk, A. and Malm, A., 2015. Synthesis and in vitro antimicrobial activity of nalidixic acid hydrazones. Journal of Hetero-cyclic Chemistry, 53 (5), pp. 1-6. https://doi.org/10.1002/jhet.2468

Rakshith, D., Gurudatt, D.M., Yashavantha Rao, H.C., Mohana, N.C., Nuthan, B.R., Ramesha, K.P. and Satish, S., 2020. Bioactivity-guided isolation of antimicrobial metabolite from Xylaria sp. Process Biochemistry, 92, pp. 378-385. https://doi.org/10.1016/j.procbio.2020.01.028

Raymundo, T., Escudero-Leyva, E., Ortega-López, I., Castro-Bustos, D., León-Avendaño, H. and Valenzuela, R., 2014. Ascomicetos del bosque tropical caducifolio en el Parque Nacional Lagunas de Chacahua, Oaxaca, México. Boletín de la Sociedad Micológica de Madrid, 38, pp. 9-21.

Raymundo, T., Coronado, M. L., Gutiérrez, A., Esqueda, M. and Valenzuela, R., 2017. New records of Ascomycota from tropical dry forest in Sonora, Mexico. Mycotaxon, 132(2), pp. 421-432. https://doi.org/10.5248/132.421

Ratnaweera, P.B., Williams, D.E., de Silva, E.D., Wijesundera, R.L.C., Dalisay, D.S. and Andersen, R.J., 2014. Helvolic acid, an antibacterial nortriterpenoid from a fungal endophyte Xylaria sp. of orchid Anoectochilus setaceusendemic to Sri Lanka. Mycology, 5(1), pp. 23–28. https://doi.org/10.1080/21501203.2014.892905

Saitou, N. and Nei, M., 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution, 4(4), pp. 406-425. https://doi.org/10.1093/oxfordjournals.molbev.a040454

San Martín, F. and Rogers, J.D., 1989. A preliminary account of Xylaria of Mexico. Mycotaxon, 34(2), pp. 283-373.

San Martín, F. and Rogers, J.D., 1995. Notas sobre la historia, relaciones de hospedante y distribución del género Xylaria (Pyrenomycetes, Sphaeriales) en México. Acta Botánica Mexicana, 30, pp. 21-40. https://doi.org/10.21829/abm30.1995.731

San Martín, F. and Rogers, J.D., 2005. Distribución y hospederos de Xylariaceae, Hymenoascomycetes. In: Sánchez-Jiménez G., P. Reyes-Castillo y R. Dirzo (eds.). Historia Natural de la Reserva de la Biósfera El Cielo, Tamaulipas, México. Universidad Autónoma de Tamaulipas. Ciudad Victoria, México.

San Martín-Romero, E., Luna-Rodríguez, M., Díaz-Fleischer, F., Iglesias-Andreu, L.G., Noa-Carrazana, J.C, Flores-Estévez, N. and Barceló-Antemate, D., 2014. A strain of Chryseobacterium sp. isolated from necrotic leaf tissue of chayote (Sechium edule Jacq). International Research Journal of Biological Sciences, 3(4), pp. 52-60. http://www.isca.me/IJBS/Archive/v3/i4/9.ISCA-IRJBS-2013-293.pdf

Santiago, K.A.A., Edrada-Ebel, R., de la Cruz, T.E.E., Cheow, Y.L. and Ting, A.S.Y., 2021. Biodiscovery of potential antibacterial diagnostic metabolites from the endolichenic fungus Xylaria venustula using LC–MS-based metabolomics. Biology, 10(3), pp. 191. https://doi.org/10.3390/biology10030191

Shamim, M., Kumar, P., Kumar, R.R., Kumar, M., Kumar, R. and Singh, K.N., 2017. Assessing fungal biodiversity using molecular markers. In: Singh, B.P., Gupta, V.K., eds: Molecular Markers in Mycology. Fungal Biology. Springer, Champp. pp. 305-333.

Stolz, A., Eppinger, E., Sosedov, O. and Kiziak C., 2019. Comparative analysis of the conversion of mandelonitrile and 2-phenylpropionitrile by a large set of variants generated from a nitrilase originating from Pseudomonas fluorescens EBC191. Molecules, 24(23), pp. 4232. https://doi.org/10.3390/molecules24234232

Suryelita, S., Riga, R., Etika, S.B., Ulfah, M. and Artasasta, M.A., 2021. Antibacterial screening of endophytic fungus Xylaria sp. derived from Andrographis paniculata (Sambiloto). Open Access Macedonian Journal of Medical Sciences, 9(A), pp. 971-975. https://doi.org/10.3889/oamjms.2021.7475

Tabbouche, S., Gürgen, A., Yildiz, S., Kilic, A. and Sökmen, M., 2017. Antimicrobial and antiquorum sensing activity of some wild mushrooms collected from Turkey. Journal of Science and Technology MSU, 5, pp. 453-457 https://doi.org/10.18586/msufbd.347692

Talukdar, R., Padhi, S., Rai, A.K., Masi, M., Evidente, A., Jha, D.K., Cimmino, A. and Tayung, K., 2021. Isolation and characterization of an endophytic fungus Colletotrichum coccodes producing tyrosol from Houttuynia cordata thunb. using ITS2 RNA secondary structure and molecular docking study. Frontiers Bioengineering and Biotechnology, 9, pp. 650247. https://doi.org/10.3389/fbioe.2021.650247

Tamura, K. and Nei. M., 1993. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Molecular Biology and Evolution, 10(3), pp. 512-526. https://doi.org/10.1093/oxfordjournals.molbev.a040023

Tamura, K., Nei, M. and Kumar, S., 2004. Prospects for inferring very large phylogenies by using the neighbor-joining method. Proceedings of the National Academy of Sciences, 101(30), pp. 11030-11035. https://doi.org/10.1073/pnas.0404206101

Tamura, K., Stecher, G. and Kumar, S., 2021. MEGA 11: Molecular evolutionary genetics analysis version 11. Molecular Biology and Evolution, 38(7), pp. 3022-3027. https://doi.org/10.1093/molbev/msab120

Veluchamy, R., Chandran, K. and Ayyappan, R., 2012. Evaluation of synergistic and antibacterial activity of Xylaria curta against drug-resistant Staphylococcus aureus and Pseudomonas aeruginosa. Mycology, 3(4), pp. 252-257. https://doi.org/10.1080/21501203.2012.753129

Wen-Bo, H., Yi-Jie, Z., Yuqi, G., Hui-Yi, Z., Jian, X., Gennaro, P. and Jin-Ming G., 2019. Cytochalasins and an abietane-type diterpenoid with allelopathic activities from the endophytic fungus Xylaria species. Journal of Agricultural and Food Chemistry, 67(13), pp. 3643-3650. https://doi.org/10.1021/acs.jafc.9b00273

Xin, X.F., Kvitko, B. and He, S., 2018. Pseudomonas syringae: what it takes to be a pathogen. Nature Reviews Microbiology, 16, pp. 316-328. https://doi.org/10.1038/nrmicro.2018.17

Xu, W.F., Hou, X.M., Yao, F.H., Zheng, N., Li, J., Wang, C.Y., Yang, R.Y. and Shao, C.L., 2017. Xylapeptide A an antibacterial cyclopentapeptide with an uncommon L-Pipecolinic acid moiety from the associated fungus Xylaria sp. (GDG-102). Scientific Reports, 7, pp. 6937. https://doi.org/10.1038/s41598-017-07331-4

Zhao, X., Zixuan, Y. and Tian, D., 2020. Quorum-sensing regulation of antimicrobial resistance in bacteria. Microorganisms, 8(3), pp. 425. https://doi.org/10.3390/microorganisms8030425

Zhao-Long, X., Ben-Chao, L., Li-Li, H., Liu-Xia, L., Yan, L., Wei-Feng, X. and Rui-Yun Y., 2022. Two new cytochalasins from the endophytic fungus Xylaria sp. GDGJ-77B. Natural Product Research, 5, pp.1-7 https://doi.org/10.1080/14786419.2022.2153362

Zheng, N., Yao, F., Liang, X., Liu, Q., Xu, W., Liang, Y., Liu, X., Li, J. and Yang, R., 2018a. A new phthalide from the endophytic fungus Xylaria sp. GDG-102. Natural Product Research, 32(7), pp. 755-760. https://doi.org/10.1080/14786419.2017.1311892

Zheng, N., Liu, Q., Dong-Lan, H., Liang, Y., Li, J. and Yang, R.Y., 2018b. A new compound from the endophytic fungus Xylaria sp. from Sophora tonkinensis. Chemistry of Natural Compounds, 54, pp. 447-449. https://doi.org/10.1007/s10600-018-2376-1

Zhu, H. and Sun S.J, 2008. Inhibition of bacterial quorum sensing- regulated behaviors by Tremella fuciformis extract. Current Microbiology, 57, pp. 418-422. https://doi.org/10.1007/s00284-008-9215-8

Zhu, H., He, C.C. and Chu, Q.H., 2011. Inhibition of quorum sensing in Chromobacterium violaceum by pigments extracted from Auricularia auricular. Letters in Applied Microbiology, 52(3), pp. 269-274. https://doi.org/10.1111/j.1472-765X.2010.02993.x




URN: http://www.revista.ccba.uady.mx/urn:ISSN:1870-0462-tsaes.v26i3.49108

DOI: http://dx.doi.org/10.56369/tsaes.4910



Copyright (c) 2023 Daniela Luis Yong, Oswaldo Guzmán López, Alejandro Salinas Castro, Elmira San Martín Romero, Juan José Zamora Palma, Jorge Ricaño Rodríguez

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.