BIOMASS PRODUCTION AND CHEMICAL COMPOSITION OF Tithonia diversifolia BY THE DATE OF HARVESTING AT DIFFERENT CUTTING HEIGHTS

Carol Estrella Uu-Espens, Dixan Pozo-Leyva, Deb Raj Aryal, Benito Bernardino Dzib-Castillo, Gilberto Villanueva-López, Fernando Casanova-Lugo, Alfonso Juventino Chay-Canul, Jorge Rodolfo Canúl-Solís

Abstract


Background: The use of Tithonia diversifolia foliage can improve the quality of animal feed because its crude protein content doubles that of tropical grasses. However, plant response regarding biomass production to frequent harvest disturbances are not known well. Objective: To evaluate the effect of different cutting heights and repeated harvests on biomass production and nutrient content of T. diversifolia in fodder banks under warm sub-humid climate. Methodology: We used a completely randomized design with a factorial arrangement; the treatments consisted of six harvest dates: Mar, May, July, September, November 2019 and January 2020; and three harvest heights: 40, 60 and 80 cm from the ground level. After each harvest date, the biomass was separated into different components, weighed and dried. Samples were taken to analyse the chemical composition of the forage. Results: The highest yield of leaves was found in the month of January, while tender stems in November. The Senescent material and total biomass were lower in September. The cutting height influenced leaf yield. Crude protein content was higher in September at a cutting height of 60 cm. Neutral detergent fiber was higher in the month of November for all cutting heights. Likewise, the highest contents of acid detergent fiber were in November for all cutting heights and in January for the cutting height of 60 cm. Lignin content was similar for all treatments. Implications: These results contribute to the development sustainable livestock production by providing alternatives to reduce grassland degradation from overgrazing. Conclusion: Biomass yield and chemical composition of T. diversifolia are affected by harvest date and heights, so it is necessary to consider it in the management strategies for optimal use of forage resources, incorporation in silvopastoral systems and the development of sustainable livestock production.

Keywords


fodder bank; forage quality; growth response; Mexican sunflower; repeated harvests

Full Text:

PDF

References


Aboyeji, C. M., Adekiya, A. O., Dunsin, O., Agbaje, G. O., Olugbemi, O., Okoh, H. O. and Olofintoye, T. A. J., 2017. Growth, yield and vitamin C content of radish (Raphanus sativus L.) as affected by green biomass of Parkia biglobosa and Tithonia diversifolia. Agroforestry Systems, 93, pp. 803–812. https://doi.org/10.1007/s10457-017-0174-6

Aboyeji, C. M., 2022. Effects of application of organic formulated fertiliser and composted Tithonia diversifolia leaves on the growth, yield and quality of okra. Biological Agriculture and Horticulture, 38(1), pp. 17–28. https://doi.org/10.1080/01448765.2021.1960604

Alders, R. G., Campbell, A., Costa, R., Guèye, E. F., Hoque, M. A., Perezgrovas-Garza, R., Rota, A. and Wingett, K., 2021. Livestock across the world: diverse animal species with complex roles in human societies and ecosystem services. Animal Frontiers, 11(5), pp. 20–29. https://doi.org/10.1093/af/vfab047

Cairns, M. F., 1997. A Property Rights Dimensions of Indigenous Fallow Management (IFM): Summary of Ten Intersecting Issues@ document prepared for the Asia-Pacific Resource Tenure Network (ARTN) Indonesia.

Canúl-Solís, J. R., Castillo-Sánchez, L. E., Escobedo-Mex, J. G., López-Herrera, M. A. and Lara-Lara, P. E., 2018. Forage yield and quality of Gliricidia sepium, Tithonia diversifolia and Cynodon nlemfuensis in monoculture and agroforestry systems. Agrociencia, 52(6), pp. 853–862. https://www.agrociencia-colpos.org/index.php/agrociencia/article/view/1709/1709

Cardona, J. L., Angulo, J. and Mahecha, L., 2022. Less nitrogen losses to the environment and more efficiency in dairy cows grazing on silvopastoral systems with Tithonia diversifolia supplemented with polyunsaturated fatty acids. Agroforestry Systems, 96, pp. 343–357. https://doi.org/10.1007/s10457-021-00722-7

Casanova-Lugo, F., Petit-Aldana, J., Solorio-Sánchez, F. J., Parsons, D. and Ramírez-Avilés, L., 2014. Forage yield and quality of Leucaena leucocephala and Guazuma ulmifolia in mixed and pure fodder banks systems in Yucatán, México. Agroforestry Systems, 88, pp. 29–39. https://doi.org/10.1007/s10457-013-9652-7

Cediel-Devia, D., Sandoval-Lozano, E. and Castañeda-Serrano, R., 2020. Effects of different regrowth ages and cutting heights on biomass production, bromatological composition and in vitro digestibility of Guazuma ulmifolia foliage. Agroforestry Systems, 94, pp. 1199–1208. https://doi.org/10.1007/s10457-019-00354-y

Foley, J. A., Ramankutty, N., Brauman, K. A., Cassidy, E. S., Gerber, J. S., Johnston, M., Mueller, N. D., O’Connell, C., Ray, D. K., West, P. C., Balzer, C., Bennett, E. M., Carpenter, S. R., Hill, J., Monfreda, C., Polasky, S., Rockström, J., Sheehan, J., Siebert, S., Tilman, D. and Zaks, D. P. M., 2011. Solutions for a cultivated planet. Nature, 478, pp. 337–342. https://doi.org/10.1038/nature10452

Graesser, J., Aide, T. M., Grau, H. R. and Ramankutty, N., 2015. Cropland/pastureland dynamics and the slowdown of deforestation in Latin America. Environmental Research Letters, 10(3), 034017. https://doi.org/10.1088/1748-9326/10/3/034017

Greenfield, H. and Southgate, D. A. T., 1992. Food Composition Data. London, Elsevier Applied Science.

Guatusmal-Gelpud, C., Escobar-Pachajoa, L. D., Meneses-Buitrago, D. H., Cardona-Iglesias, J. L. and Castro-Rincón, E., 2020. Producción y calidad de Tithonia diversifolia y Sambucus nigra en trópico altoandino colombiano. Agronomía Mesoamericana, 31(1), pp. 193–208. https://doi.org/10.15517/am.v31i1.36677

Gutiérrez, O., La, O. O., Scull, I. and Ruiz, T., 2017. Nutritive value of Tithonia diversifolia for animal feeding. In: Savon, V. L. L., Gutiérrez, B. O. and Febles, P. G. (Eds). Mulberry, moringa and tithonia in animal feed and other uses. Results in Latin America and the Caribbean. FAO/ICA, Habana, Cuba, pp.203–221.

Herrero, M., Havlík, P., Valin, H., Notenbaert, A., Rufino, M. C., Thornton, P. K., Blümmel, M., Weiss, F., Grace, D. and Obersteiner, M., 2013. Biomass use, production, feed efficiencies and greenhouse gas emissions from global livestock systems. Proceedings of the National Academy of Sciences, 110(52), pp. 20888–20893. https://doi.org/10.1073/pnas.1308149110

IUSS Working Group WRB., 2022. World Reference Base for Soil Resources. International soil classification system for naming soils and creating legends for soil maps. 4th edition. International Union of Soil Sciences (IUSS), Vienna, Austria.

Kolb, M. and Galicia, L., 2018. Scenarios and story lines: drivers of land use change in southern Mexico. Environment, Development and Sustainability, 20, pp. 681–702. https://doi.org/10.1007/s10668-016-9905-5

Letty, B. A., Makhubedu, T., Scogings, P. F. and Mafongoya, P., 2021. Effect of cutting height on non-structural carbohydrates, biomass production and mortality rate of pigeon peas. Agroforestry Systems, 95, pp. 659–667. https://doi.org/10.1007/s10457-021-00616-8

Mauricio, M. R., Ribeiro, S. R., Silveira, R. S., Silva, L. P., Calsavara, L., Pereira, G. R. L. and Paciullo, S. D., 2014. Tithonia diversifolia for ruminant nutrition. Tropical Grasslands, 2(1), pp. 82–84. https://doi.org/10.17138/tgft(2)82-84

Mejía-Díaz, E., Mahecha-Ledesma, L. and Angulo-Arizala, J., 2017. Tithonia diversifolia: specie for grazing in silvopastoral systems and methods for estimating consumption. Agronomía Mesoamericana, 28(1), pp. 289–302. https://doi.org/10.15517/am.v28i1.22673

Morales-Ruiz, D. E., Aryal, D. R., Pinto-Ruiz, R., Guevara-Hernández, F., Casanova-Lugo, F. and Villanueva-López, G., 2021. Carbon contents and fine root production in tropical silvopastoral systems. Land Degradation and Development, 32(2), pp. 738–756. https://doi.org/10.1002/ldr.3761

Mustonen, P. S. J., Oelbermann, M. and Kass, D., 2012. Using Tithonia diversifolia (Hemsl.) Gray in a short fallow system to increase soil phosphorus availability on a Costa Rican andosol. Journal of Agricultural Science, 4(2), pp. 91–100. https://doi.org/10.5539/jas.v4n2p91

Navale, M. R., Bhardwaj, D. R., Bishist, R., Thakur, C. L., Sharma, S., Sharma, P., Kumar, D. and Probo, M., 2022. Seasonal variations in the nutritive value of fifteen multipurpose fodder tree species: A case study of north-western Himalayan mid-hills. Plos One, 17(10), e0276689. https://doi.org/10.1371/journal.pone.0276689

Oros-Ortega, I., Lara-Pérez, L. A., Casanova-Lugo, F., Díaz-Echeverría, V. F., Villanueva-López, G., Ramírez-Barajas, P. J. and Cetzal-Ix, W., 2020. Diversity and importance of the relationship between arbuscular mycorrhizal fungi and nitrogen-fixing bacteria in tropical agroforestry systems in Mexico. In: Varma, A., Tripathi, S. and Prasad, R. (Eds). Plant Microbe Symbiosis. Springer, Cham. https://doi.org/10.1007/978-3-030-36248-5_2

Orwa, C., Mutua, A., Kindt, R., Jamnadass, R. and Anthony, S., 2009. Agroforestree Database: A Tree Reference and Selection Guide, Version 4.0. Kenya: World Agroforestry Centre. http://www.worldagroforestry.org/output/agroforestree-database

Ramírez-Rivera, U., Sanginés-García, J. R., Escobedo-Mex, J. G., Cen-Chuc, F., Rivera-Lorca, J. A. and Lara-Lara, P. E., 2010. Effect of diet inclusion of Tithonia diversifolia on feed intake, digestibility and nitrogen balance in tropical sheep. Agroforestry Systems, 80, pp. 295–302. https://doi.org/10.1007/s10457-010-9320-0

Ramos-Trejo, O., Castillo-Huchín, J. and Sandoval-Gío, J. J., 2015. Effect of cutting intervals and heights in forage productivity of Moringa oleifera. Revista BioCiencias, 3(3), pp. 187–194. http://dx.doi.org/10.15741/revbio.03.03.05

Ruiz, T. E., Febles, G. J., Alonso, J., Crespo, G. and Valenciaga, N., 2017. Agronomy of Tithonia diversifolia in Latin America and the Caribbean region. In: Savon, V. L. L., Gutiérrez, B. O. and Febles, P. G. (Eds). Mulberry, moringa and tithonia in animal feed, and other uses. Results in Latin America and the Caribbean. FAO/ICA, Habana, Cuba, pp.171–201.

SAS Institute Inc., 2020. SAS® Enterprise Guide 8.3: Guía del usuario. Cary, NC: SAS Institute Inc.

Senarathne, S. H. S., Atapattu, A. J., Raveendra, T., Mensah, S. and Dassanayake, K. B., 2019. Biomass allocation and growth performance of Tithonia diversifolia (Hemsl.) A. Gray in coconut plantations in Sri Lanka. Agroforestry Systems, 93, pp. 1865–1875. https://doi.org/10.1007/s10457-018-0290-y

Valenzuela-Que, F. G., Villanueva?López, G., Alcudia?Aguilar, A., Medrano?Pérez, O. R., Cámara?Cabrales, L., Martínez?Zurimendi, P., Casanova-Lugo, F. and Aryal, D. R., 2022. Silvopastoral systems improve carbon stocks at livestock ranches in Tabasco, Mexico. Soil Use and Management, 38(2), 1237–1249. https://doi.org/10.1111/sum.12799

Vega-Granados, E., Sanginés-García, L., Gómez-Gurrola, A., Hernández-Ballesteros, A., Solano, L., Escalera-Valente, F. and Loya-Olguin, J. L., 2019. Replacement of alfalfa with Tithonia diversifolia in lambs fed sugar cane silage-based diets and rice polishing. Revista Mexicana de Ciencias Pecuarias, 10(2), pp. 267–282. https://doi.org/10.22319/rmcp.v10i2.4455




URN: http://www.revista.ccba.uady.mx/urn:ISSN:1870-0462-tsaes.v26i3.48887

DOI: http://dx.doi.org/10.56369/tsaes.4888



Copyright (c) 2023 Fernando Casanova Lugo, Carol Estrella Uu-Espens, Dixan Pozo-Leyva, Deb Raj Aryal, Benito Bernardino Dzib-Castillo, Gilberto Villanueva-López, Alfonso Juventino Chay-Canul, Jorge Rodolfo Canúl-Solís

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.