ENZYMATIC SACCHARIFICATION OF PRETREATED SUGARCANE BAGASSE BY HYDROGEN PEROXIDE FOR BIOETHANOL PRODUCTION
Abstract
Keywords
Full Text:
PDFReferences
Abd, E. R., and Bakhiet, S. E. A., 2018. Optimization of factors influencing cellulase production by some indigenous isolated fungal species. Jordan Journal of Biological Sciences, 11(1), pp. 31-36. Disponible en línea: https://jjbs.hu.edu.jo/files/v11n1/Paper%20Number%205m.pdf
Afolabi, C. G., Ezekiel, C. N., Ogunbiyi, A. E., Oluwadairo, O. J., Sulyok, M., and Krska, R., 2020. Fungi and mycotoxins in cowpea (Vigna unguiculata L) on Nigerian markets. Food Additives y Contaminants: Part B, 13(1), pp. 52–58. https://doi.org/10.1080/19393210.2019.1690590
Aguilar-Rivera, N., Debernardi-Vázquez, T. J., and Herrera-Paz, H. D., 2017. Byproducts, coproducts and derivatives of the sugar agroindustry. Agroproductividad, 10(11), pp. 13–20. Disponible en línea: https://revista-agroproductividad.org/index.php/agroproductividad/article/view/71/67
Arana-Cuenca, A., Tovar-Jiménez, X., Favela-Torres, E., Perraud-Gaime, I., González-Becerra, A. E., Martínez, A., Moss-Acosta, C. L., Mercado-Flores, Y., and Téllez-Jurado, A., 2019. Use of water hyacinth as a substrate for the production of filamentous fungal hydrolytic enzymes in solid-state fermentation. 3 Biotech, 9(1), pp- 1–9. https://doi.org/10.1007/s13205-018-1529-z
Araujo-Guilherme, A., Dantas, P. V. F., de Araújo Padilha, C. E., Dos Santos, E. S., and de Macedo, G. R., 2019. Ethanol production from sugarcane bagasse: Use of different fermentation strategies to enhance an environmental-friendly process. Journal of environmental management, 234, pp. 44-51. https://doi.org/10.1016/j.jenvman.2018.12.102
Asis, A., Shahriar, S. A., Naher, L., Saallah, S., Fatihah, H. N. N., Kumar, V., and Siddiquee, S., 2021. Identification patterns of Trichoderma strains using morphological characteristics, phylogenetic analyses and lignocellulolytic activities. Molecular biology reports, 48(4), pp. 3285–3301. https://doi.org/10.1007/s11033-021-06321-0
Barnett, H. L. and Hunter, B. B., 1972. Illustrated Genera of Imperfect Fungi. 3rd Edition, Burgess Publishing Co., Minneapolis.
Ba?ar, ?. A., Çoban, Ö., Göksungur, M. Y., Eskicio?lu, Ç., and Perendeci, N. A., 2021. Enhancement of lignocellulosic biomass anaerobic digestion by optimized mild alkaline hydrogen peroxide pretreatment for biorefinery applications. Journal of Environmental Management, 298, 113539p. https://doi.org/10.1016/j.jenvman.2021.113539
Bychkov, A., Podgorbunskikh, E., Bychkova, E., and Lomovsky, O., 2019. Current achievements in the mechanically pretreated conversion of plant biomass. Biotechnology and Bioengineering, 116(5), pp. 1231–1244. https://doi.org/10.1002/bit.26925
CONADESUCA., 2023. Comité Nacional para el Desarrollo Sustentable de la Caña de Azúcar (CONADESUCA). 9° Informe Estadístico del Sector Agroindustrial de la Caña de Azúcar en México. Disponible en línea: https://www.siiba.conadesuca.gob.mx/siiaca/docext/9no_informe_estadistico.pdf
Dincer, I., 2018. Comprehensive energy systems. Elsevier. pp. 875-908. Disponible en línea: https://www.sciencedirect.com/referencework/9780128149256/comprehensive-energy-systems
Figueroa-Torres, L. A., Lizardi-Jiménez, M. A., López-Ramírez, N., Varela-Santos, E. C., Hernández-Rosas, F., Favela-Torres, E., and Hernández-Martínez, R., 2020. Saccharification of water hyacinth biomass by a combination of steam explosion with enzymatic technologies for bioethanol production. 3 Biotech, 10(10), 432p. https://doi.org/10.1007/s13205-020-02426-8
Florencio, C., Couri, S., and Farinas, C. S., 2012. Correlation between agar plate screening and solid-state fermentation for the prediction of cellulase production by Trichoderma strains. Enzyme research, 2012. https://doi.org/10.1155/2012/793708
Gordillo-Fuenzalida, F., Echeverria-Vega, A., Cuadros-Orellana, S., Faundez, C., Kähne, T., and Morales-Vera, R., 2019. Cellulases production by a Trichoderma sp. Using food manufacturing wastes. Applied Sciences, 9(20), 4419p. https://doi.org/10.3390/app9204419
Haldar, D., and Purkait, M. K., 2021. A review on the environment-friendly emerging techniques for pretreatment of lignocellulosic biomass: Mechanistic insight and advancements. Chemosphere, 264, 128523p. https://doi.org/10.1016/j.chemosphere.2020.128523
Herrera, O., 2003. Obtención y selección de cepas de Aspergillus niger sobreproductoras de Fitasa [Tesis para obtener el grado de Maestro en Biotecnología]. Universidad Autónoma Metropolitana. Disponible en línea: https://smbb.mx/congresos%20smbb/puertovallarta03/TRABAJOS/AREA_XII/CARTEL/CXII-21.pdf
Hoang, A. T., Nižeti?, S., Ong, H. C., Mofijur, M., Ahmed, S. F., Ashok, B., and Chau, M. Q., 2021. Insight into the recent advances of microwave pretreatment technologies for the conversion of lignocellulosic biomass into sustainable biofuel. Chemosphere, 281, 130878p. https://doi.org/10.1016/j.chemosphere.2021.130878
Huang, Y., Qin, X., Luo, X.-M., Nong, Q., Yang, Q., Zhang, Z., Gao, Y., Lv, F., Chen, Y., and Yu, Z., 2015. Efficient enzymatic hydrolysis and simultaneous saccharification and fermentation of sugarcane bagasse pulp for ethanol production by cellulase from Penicillium oxalicum EU2106 and thermotolerant Saccharomyces cerevisiae ZM1-5. Biomass and Bioenergy, 77, pp. 53-63. https://doi.org/10.1016/j.biombioe.2015.03.020
Ire, F. S., Okoli, A. O., and Ezebuiro, V., 2018. Production and optimization of cellulase from Penicillium sp. Using corn-cob and pawpaw fibre as substrates. Journal of Advances in Microbiology, 8(2), pp. 1-10. https://doi.org/10.9734/JAMB/2018/39227
Isarankura-Na-Ayudhya, C., Tantimongcolwat, T., Kongpanpee, T., Prabkate, P., and Prachayasittikul, V., 2007. Appropriate Technology for the Bioconversion of Water Hyacinth (Eichhornia crassipes) to Liquid Ethanol: Future Prospects for Community Strengthening and Sustainable Development. Excli J, 61. https://doi.org/10.17877/DE290R-344
Jugwanth, Y., Sewsynker-Sukai, Y., and Gueguim Kana, E. B., 2020. Valorization of sugarcane bagasse for bioethanol production through simultaneous saccharification and fermentation: Optimization and kinetic studies. Fuel, 262, 116552p. https://doi.org/10.1016/j.fuel.2019.116552
Kainthola, J., Shariq, M., Kalamdhad, A. S., and Goud, V. V., 2019. Enhanced methane potential of rice straw with microwave assisted pretreatment and its kinetic analysis. Journal of environmental management, 232, pp. 188–196. https://doi.org/10.1016/j.jenvman.2018.11.052
Kasana, R. C., Salwan, R., Dhar, H., Dutt, S., & Gulati, A., 2008. A rapid and easy method for the detection of microbial cellulases on agar plates using Gram’s iodine. Current microbiology, 57(5), pp. 503–507. https://doi.org/10.1007/s00284-008-9276-8
Kucharska, K., S?upek, E., Cie?li?ski, H., and Kami?ski, M., 2020. Advantageous conditions of saccharification of lignocellulosic biomass for biofuels generation via fermentation processes. Chemical Papers, 74, pp. 1199-1209. https://doi.org/10.1007/s11696-019-00960-1
Kumar, A., Kumar, V., and Singh, B., 2021. Cellulosic and hemicellulosic fractions of sugarcane bagasse: Potential, challenges and future perspective. International Journal of Biological Macromolecules, 169, pp. 564–582. https://doi.org/10.1016/j.ijbiomac.2020.12.175
Kumar, V., and Shukla, P., 2018. Extracellular xylanase production from T. lanuginosus VAPS24 at pilot scale and thermostability enhancement by immobilization. Process Biochemistry, 71, pp. 53–60. https://doi.org/10.1016/j.procbio.2018.05.019
Lacerda, L. T., Gusmão, L. F., and Rodrigues, A., 2018. Diversity of endophytic fungi in Eucalyptus microcorys assessed by complementary isolation methods. Mycological Progress, 17(6), pp. 719–727. https://doi.org/10.1007/s11557-018-1385-6
Lukajtis, R., Rybarczyk, P., Kucharska, K., Konopacka-Lyskawa, D., Slupek, E., Wychodnik, K., and Kami?ski, M., 2018. Optimization of saccharification conditions of lignocellulosic biomass under alkaline pre-treatment and enzymatic hydrolysis. Energies, 11(4), 886p. https://doi.org/10.3390/en11040886
Ma, H., Liu, W.-W., Chen, X., Wu, Y.-J., and Yu, Z.-L., 2009. Enhanced enzymatic saccharification of rice straw by microwave pretreatment. Bioresource technology, 100(3), pp. 1279–1284. https://doi.org/10.1016/j.biortech.2008.08.045
Martínez-Salgado, S. J., Andrade-Hoyos, P., Romero-Arenas, O., Villa-Ruano, N., Landeta-Cortés, G., and Rivera-Tapia, J. A., 2021. Control in vitro de Fusarium sp. Asociado al cultivo de cebolla mediante Trichoderma harzianum. Revista Mexicana de Fitopatología, Mexican Journal of Phytopathology, 39(2), Art. 2. https://doi.org/10.18781/R.MEX.FIT.2101-4
Matos, M., Valdivia, A., Rodríguez, Z., Bocourt, R., Brizuela, M. A., Portilla, Y., Rubio, Y., & Ramírez, H. L., 2018. Production of xylanases by Bacillus subtilis E44 under submerged fermentation conditions. Cuban Journal of Agricultural Science, 52(3). Disponible en línea: https://www.redalyc.org/journal/1930/193060480010/193060480010.pdf
Meléndez-Hernández, P. A., Hernández-Beltrán, J. U., Hernández-Guzmán, A., Morales-Rodríguez, R., Torres-Guzmán, J. C., and Hernández-Escoto, H., 2021. Comparative of alkaline hydrogen peroxide pretreatment using NaOH and Ca (OH) 2 and their effects on enzymatic hydrolysis and fermentation steps. Biomass Conversion and Biorefinery, 11(5), pp. 1897–1907. https://doi.org/10.1007/s13399-019-00574-3
Mendoza-Infante, N. G., Debernardi de la Vequia, H., Hidalgo-Contreras, J., Mugica-Alvarez, V., & Hernandez-Martinez, R., 2022. Fungal microbiota of sugarcane straw and their ability to produce hydrolytic enzymes. Revista de la facultad de agronomia de la universidad del zulia, 39(1). https://doi.org/10.47280/RevFacAgron(LUZ).v39.n1.08
Miller, G. L., 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical chemistry, 31(3), pp. 426–428. https://doi.org/10.1021/ac60147a030
Moran-Aguilar, M. G., Costa-Trigo, I., Calderón-Santoyo, M., Domínguez, J. M., and Aguilar-Uscanga, M. G., 2021. Production of cellulases and xylanases in solid-state fermentation by different strains of Aspergillus niger using sugarcane bagasse and brewery spent grain. Biochemical Engineering Journal, 172, 108060p. https://doi.org/10.1016/j.bej.2021.108060
Naher, L., Fatin, S. N., Sheikh, M. A. H., Azeez, L. A., Siddiquee, S., Zain, N. M., and Karim, S. M. R., 2021. Cellulase Enzyme Production from Filamentous Fungi Trichoderma reesei and Aspergillus awamori in Submerged Fermentation with Rice Straw. Journal of Fungi, 7(10), 868p. https://doi.org/10.3390/jof7100868
Niju, S., Nishanthini, T., and Balajii, M., 2020. Alkaline hydrogen peroxide-pretreated sugarcane tops for bioethanol production—A process optimization study. Biomass Conversion and Biorefinery, 10(1), pp. 149–165. https://doi.org/10.1007/s13399-019-00524-z
Niju, S., and Swathika, M., 2019. Delignification of sugarcane bagasse using pretreatment strategies for bioethanol production. Biocatalysis and Agricultural Biotechnology, 20, 101263p. https://doi.org/10.1016/j.bcab.2019.101263
Nogueira, D. P., Vasconcelos, L. C., Castiglioni, G. L., Freitas, F. F., and Seolatto, A. A., 2021. Comparative study of the efficiency of pretreatment with alkaline hydrogen peroxide in pineapple bagasse in different granulometries submitted to acid and enzymatic saccharification. Research, Society and Development, 10(1). https://doi.org/10.33448/rsd-v10i1.9902
Prajapati, B. P., Jana, U. K., Suryawanshi, R. K., and Kango, N., 2020. Sugarcane bagasse saccharification using Aspergillus tubingensis enzymatic cocktail for 2G bio-ethanol production. Renewable Energy, 152, pp. 653-663. https://doi.org/10.1016/j.renene.2020.01.063
Rodríguez-Zúñiga, U. F., Neto, V. B., Couri, S., Crestana, S., and Farinas, C. S., 2014. Use of spectroscopic and imaging techniques to evaluate pretreated sugarcane bagasse as a substrate for cellulase production under solid-state fermentation. Applied biochemistry and biotechnology, 172(5), pp. 2348-2362. https://doi.org/10.1007/s12010-013-0678-0
Rukmana, S., Ansori, A. N., Kusala, M. K., Utami, U., Wahyudi, D., and Mandasari, A. A., 2020. Molecular identification of trichoderma isolates from sugarcane bagasse based on internal transcribed spacer (ITS) rDNA. Research Journal of Pharmacy and Technology, 13(7), pp. 3300-3304. https://doi.org/10.5958/0974-360X.2020.00585.5
Sankaran, R., Cruz, R. A. P., Pakalapati, H., Show, P. L., Ling, T. C., Chen, W.-H., and Tao, Y., 2020. Recent advances in the pretreatment of microalgal and lignocellulosic biomass: A comprehensive review. Bioresource technology, 298, 122476p. https://doi.org/10.1016/j.biortech.2019.122476
Saroj, P., Manasa, P., and Narasimhulu, K., 2018. Characterization of thermophilic fungi producing extracellular lignocellulolytic enzymes for lignocellulosic hydrolysis under solid-state fermentation. Bioresources and Bioprocessing, 5(1), pp. 1-14. https://doi.org/10.1186/s40643-018-0216-6
Savín-Molina, J., Hernández-Montiel, L. G., Ceiro-Catasú, W., Ávila-Quezada, G. D., Palacios-Espinosa, A., Ruiz-Espinoza, F. H., and Romero-Bastidas, M., 2021. Caracterización morfológica y potencial de biocontrol de especies de Trichoderma aisladas de suelos del semiárido. Revista mexicana de fitopatología, 39(3), pp. 435–451. https://doi.org/10.18781/r.mex.fit.2106-7
Sheng, Y., Lam, S. S., Wu, Y., Ge, S., Wu, J., Cai, L., Huang, Z., Van Le, Q., Sonne, C., and Xia, C., 2021. Enzymatic conversion of pretreated lignocellulosic biomass: A review on influence of structural changes of lignin. Bioresource technology, 324, 124631p. https://doi.org/10.1016/j.biortech.2020.124631
Soria-Noroña, L. C., and López-Almeida, J. V., 2020. Determinación del Índice de Potencia lipolítico y proteolítico en bacterias psicrótolerantes de las aguas termales de los Ilinizas. Dominio de las Ciencias, 6(2), pp. 1091–1196. https://doi.org/10.23857/dc.v6i2.1269
Su, T., Zhao, D., Khodadadi, M., and Len, C., 2020. Lignocellulosic biomass for bioethanol: Recent advances, technology trends, and barriers to industrial development. Current Opinion in Green and Sustainable Chemistry, 24, pp. 56–60. https://doi.org/10.1016/j.cogsc.2020.04.005
Vázquez-Montoya, E. L., Castro-Ochoa, L. D., Maldonado-Mendoza, I. E., Luna-Suárez, S., and Castro-Martínez, C., 2020. Moringa straw as cellulase production inducer and cellulolytic fungi source. Revista argentina de microbiología, 52(1), pp. 4-12. https://doi.org/10.1016/j.ram.2019.02.005
Wu, X., Luo, N., Xie, S., Zhang, H., Zhang, Q., Wang, F., and Wang, Y., 2020. Photocatalytic transformations of lignocellulosic biomass into chemicals. Chemical Society Reviews, 49(17), pp. 6198–6223. https://doi.org/10.1039/D0CS00314J
Zhai, R., Hu, J., and Jin, M., 2022. Towards efficient enzymatic saccharification of pretreated lignocellulose: Enzyme inhibition by lignin-derived phenolics and recent trends in mitigation strategies. Biotechnology Advances, 61, 108044p. https://doi.org/10.1016/j.biotechadv.2022.108044
Zin, N. A., and Badaluddin, N. A., 2020. Biological functions of Trichoderma spp. for agriculture applications. Annals of Agricultural Sciences, 65(2), pp. 168-178. https://doi.org/10.1016/j.aoas.2020.09.003
URN: http://www.revista.ccba.uady.mx/urn:ISSN:1870-0462-tsaes.v26i2.48310
DOI: http://dx.doi.org/10.56369/tsaes.4831
Copyright (c) 2023 Serafín Perez Contreras, Ricardo Hernandez Martínez, Francisco Hernandez Rosas, Jose Andres Herrera Corredor, Elizabeth Del Carmen Varela Santos
This work is licensed under a Creative Commons Attribution 4.0 International License.