Serafín Perez Contreras, Ricardo Hernandez Martínez, Francisco Hernandez Rosas, Jose Andres Herrera Corredor, Elizabeth Del Carmen Varela Santos


Background. Sugarcane (Saccharum officinarum L.) is one of the main crops in Mexico; during the harvest 2021-2022, 54.6 million tons of raw milled sugarcane were industrialized, ranking sixth in production worldwide. However, during processing, several products and co-products are generated, including sugarcane bagasse, that is used to produce electricity by combustion, converting nearly 25% of its weight into greenhouse gases and generating environmental problems. For this reason, it is necessary to design processes aligned with the axes of sustainable development (environmental, social and economic) to promote valorization and diversification. Objective. To determine the effect of two pretreatments on the enzymatic saccharification of sugarcane bagasse for its subsequent conversion to bioethanol. Methodology. The production of enzymatic extracts by solid state fermentation (SSF) was carried out using sugarcane bagasse as support-substrate and autochthonous fungal strains as inoculum. For the enzymatic saccharification the sugarcane bagasse was pretreated with hydrogen peroxide and microwaves, for the hydrogen peroxide pretreatment the variables time (1, 3 and 6 h), ratio mL of peroxide per gram of bagasse (16. 6:1, 33.3:1 and 100:1), temperature (26, 50 and 70°C) and peroxide concentration (1, 3 and 5%); and for microwave pretreatment the variables microwave power (p30, p50 and p80) and time (5 and 10 min) were evaluated. For the enzymatic saccharification, enzymatic extracts produced by SSF and bagasse pretreated with hydrogen peroxide were used. Finally, fermentable sugars obtained from the enzymatic saccharification of sugarcane bagasse were used as a unique carbon source in alcoholic fermentation system. Results. The SSF results showed the presence of cellulase (2 U/g) and xylanase (61 U/g) activity. On the other hand, the results of pretreatment of sugarcane bagasse with hydrogen peroxide indicated that the best conditions were 100 mL of 3% hydrogen peroxide per gram of sugarcane bagasse at 50°C, while the best conditions of microwave pretreatment were 50p for 5 minutes. The enzymatic saccharification of sugarcane bagasse showed a maximum yield of reducing sugars when the sugarcane bagasse was pretreated with hydrogen peroxide, obtaining 0.41 g/g. Finally, the maximum ethanol concentration (4.32 g/L) was obtained after 48 hours of fermentation with commercial Saccharomyces cerevisae. Implications. The sugar agroindustry in Mexico is limited to the production of sucrose and ethanol, being necessary a sustainable productive diversification. Conclusions. The isolation of autochthonous fungal strains allowed the production of cellulases and xylanases by solid fermentation with adequate specificity to hydrolyze/saccharify pretreated sugarcane bagasse and its subsequent conversion to ethanol.


Sugarcane agroindustry; biomass valorization; solid state fermentation; enzymatic hydrolysis; bioprocess.

Full Text:



Abd, E. R., and Bakhiet, S. E. A., 2018. Optimization of factors influencing cellulase production by some indigenous isolated fungal species. Jordan Journal of Biological Sciences, 11(1), pp. 31-36. Disponible en línea: https://jjbs.hu.edu.jo/files/v11n1/Paper%20Number%205m.pdf

Afolabi, C. G., Ezekiel, C. N., Ogunbiyi, A. E., Oluwadairo, O. J., Sulyok, M., and Krska, R., 2020. Fungi and mycotoxins in cowpea (Vigna unguiculata L) on Nigerian markets. Food Additives y Contaminants: Part B, 13(1), pp. 52–58. https://doi.org/10.1080/19393210.2019.1690590

Aguilar-Rivera, N., Debernardi-Vázquez, T. J., and Herrera-Paz, H. D., 2017. Byproducts, coproducts and derivatives of the sugar agroindustry. Agroproductividad, 10(11), pp. 13–20. Disponible en línea: https://revista-agroproductividad.org/index.php/agroproductividad/article/view/71/67

Arana-Cuenca, A., Tovar-Jiménez, X., Favela-Torres, E., Perraud-Gaime, I., González-Becerra, A. E., Martínez, A., Moss-Acosta, C. L., Mercado-Flores, Y., and Téllez-Jurado, A., 2019. Use of water hyacinth as a substrate for the production of filamentous fungal hydrolytic enzymes in solid-state fermentation. 3 Biotech, 9(1), pp- 1–9. https://doi.org/10.1007/s13205-018-1529-z

Araujo-Guilherme, A., Dantas, P. V. F., de Araújo Padilha, C. E., Dos Santos, E. S., and de Macedo, G. R., 2019. Ethanol production from sugarcane bagasse: Use of different fermentation strategies to enhance an environmental-friendly process. Journal of environmental management, 234, pp. 44-51. https://doi.org/10.1016/j.jenvman.2018.12.102

Asis, A., Shahriar, S. A., Naher, L., Saallah, S., Fatihah, H. N. N., Kumar, V., and Siddiquee, S., 2021. Identification patterns of Trichoderma strains using morphological characteristics, phylogenetic analyses and lignocellulolytic activities. Molecular biology reports, 48(4), pp. 3285–3301. https://doi.org/10.1007/s11033-021-06321-0

Barnett, H. L. and Hunter, B. B., 1972. Illustrated Genera of Imperfect Fungi. 3rd Edition, Burgess Publishing Co., Minneapolis.

Ba?ar, ?. A., Çoban, Ö., Göksungur, M. Y., Eskicio?lu, Ç., and Perendeci, N. A., 2021. Enhancement of lignocellulosic biomass anaerobic digestion by optimized mild alkaline hydrogen peroxide pretreatment for biorefinery applications. Journal of Environmental Management, 298, 113539p. https://doi.org/10.1016/j.jenvman.2021.113539

Bychkov, A., Podgorbunskikh, E., Bychkova, E., and Lomovsky, O., 2019. Current achievements in the mechanically pretreated conversion of plant biomass. Biotechnology and Bioengineering, 116(5), pp. 1231–1244. https://doi.org/10.1002/bit.26925

CONADESUCA., 2023. Comité Nacional para el Desarrollo Sustentable de la Caña de Azúcar (CONADESUCA). 9° Informe Estadístico del Sector Agroindustrial de la Caña de Azúcar en México. Disponible en línea: https://www.siiba.conadesuca.gob.mx/siiaca/docext/9no_informe_estadistico.pdf

Dincer, I., 2018. Comprehensive energy systems. Elsevier. pp. 875-908. Disponible en línea: https://www.sciencedirect.com/referencework/9780128149256/comprehensive-energy-systems

Figueroa-Torres, L. A., Lizardi-Jiménez, M. A., López-Ramírez, N., Varela-Santos, E. C., Hernández-Rosas, F., Favela-Torres, E., and Hernández-Martínez, R., 2020. Saccharification of water hyacinth biomass by a combination of steam explosion with enzymatic technologies for bioethanol production. 3 Biotech, 10(10), 432p. https://doi.org/10.1007/s13205-020-02426-8

Florencio, C., Couri, S., and Farinas, C. S., 2012. Correlation between agar plate screening and solid-state fermentation for the prediction of cellulase production by Trichoderma strains. Enzyme research, 2012. https://doi.org/10.1155/2012/793708

Gordillo-Fuenzalida, F., Echeverria-Vega, A., Cuadros-Orellana, S., Faundez, C., Kähne, T., and Morales-Vera, R., 2019. Cellulases production by a Trichoderma sp. Using food manufacturing wastes. Applied Sciences, 9(20), 4419p. https://doi.org/10.3390/app9204419

Haldar, D., and Purkait, M. K., 2021. A review on the environment-friendly emerging techniques for pretreatment of lignocellulosic biomass: Mechanistic insight and advancements. Chemosphere, 264, 128523p. https://doi.org/10.1016/j.chemosphere.2020.128523

Herrera, O., 2003. Obtención y selección de cepas de Aspergillus niger sobreproductoras de Fitasa [Tesis para obtener el grado de Maestro en Biotecnología]. Universidad Autónoma Metropolitana. Disponible en línea: https://smbb.mx/congresos%20smbb/puertovallarta03/TRABAJOS/AREA_XII/CARTEL/CXII-21.pdf

Hoang, A. T., Nižeti?, S., Ong, H. C., Mofijur, M., Ahmed, S. F., Ashok, B., and Chau, M. Q., 2021. Insight into the recent advances of microwave pretreatment technologies for the conversion of lignocellulosic biomass into sustainable biofuel. Chemosphere, 281, 130878p. https://doi.org/10.1016/j.chemosphere.2021.130878

Huang, Y., Qin, X., Luo, X.-M., Nong, Q., Yang, Q., Zhang, Z., Gao, Y., Lv, F., Chen, Y., and Yu, Z., 2015. Efficient enzymatic hydrolysis and simultaneous saccharification and fermentation of sugarcane bagasse pulp for ethanol production by cellulase from Penicillium oxalicum EU2106 and thermotolerant Saccharomyces cerevisiae ZM1-5. Biomass and Bioenergy, 77, pp. 53-63. https://doi.org/10.1016/j.biombioe.2015.03.020

Ire, F. S., Okoli, A. O., and Ezebuiro, V., 2018. Production and optimization of cellulase from Penicillium sp. Using corn-cob and pawpaw fibre as substrates. Journal of Advances in Microbiology, 8(2), pp. 1-10. https://doi.org/10.9734/JAMB/2018/39227

Isarankura-Na-Ayudhya, C., Tantimongcolwat, T., Kongpanpee, T., Prabkate, P., and Prachayasittikul, V., 2007. Appropriate Technology for the Bioconversion of Water Hyacinth (Eichhornia crassipes) to Liquid Ethanol: Future Prospects for Community Strengthening and Sustainable Development. Excli J, 61. https://doi.org/10.17877/DE290R-344

Jugwanth, Y., Sewsynker-Sukai, Y., and Gueguim Kana, E. B., 2020. Valorization of sugarcane bagasse for bioethanol production through simultaneous saccharification and fermentation: Optimization and kinetic studies. Fuel, 262, 116552p. https://doi.org/10.1016/j.fuel.2019.116552

Kainthola, J., Shariq, M., Kalamdhad, A. S., and Goud, V. V., 2019. Enhanced methane potential of rice straw with microwave assisted pretreatment and its kinetic analysis. Journal of environmental management, 232, pp. 188–196. https://doi.org/10.1016/j.jenvman.2018.11.052

Kasana, R. C., Salwan, R., Dhar, H., Dutt, S., & Gulati, A., 2008. A rapid and easy method for the detection of microbial cellulases on agar plates using Gram’s iodine. Current microbiology, 57(5), pp. 503–507. https://doi.org/10.1007/s00284-008-9276-8

Kucharska, K., S?upek, E., Cie?li?ski, H., and Kami?ski, M., 2020. Advantageous conditions of saccharification of lignocellulosic biomass for biofuels generation via fermentation processes. Chemical Papers, 74, pp. 1199-1209. https://doi.org/10.1007/s11696-019-00960-1

Kumar, A., Kumar, V., and Singh, B., 2021. Cellulosic and hemicellulosic fractions of sugarcane bagasse: Potential, challenges and future perspective. International Journal of Biological Macromolecules, 169, pp. 564–582. https://doi.org/10.1016/j.ijbiomac.2020.12.175

Kumar, V., and Shukla, P., 2018. Extracellular xylanase production from T. lanuginosus VAPS24 at pilot scale and thermostability enhancement by immobilization. Process Biochemistry, 71, pp. 53–60. https://doi.org/10.1016/j.procbio.2018.05.019

Lacerda, L. T., Gusmão, L. F., and Rodrigues, A., 2018. Diversity of endophytic fungi in Eucalyptus microcorys assessed by complementary isolation methods. Mycological Progress, 17(6), pp. 719–727. https://doi.org/10.1007/s11557-018-1385-6

Lukajtis, R., Rybarczyk, P., Kucharska, K., Konopacka-Lyskawa, D., Slupek, E., Wychodnik, K., and Kami?ski, M., 2018. Optimization of saccharification conditions of lignocellulosic biomass under alkaline pre-treatment and enzymatic hydrolysis. Energies, 11(4), 886p. https://doi.org/10.3390/en11040886

Ma, H., Liu, W.-W., Chen, X., Wu, Y.-J., and Yu, Z.-L., 2009. Enhanced enzymatic saccharification of rice straw by microwave pretreatment. Bioresource technology, 100(3), pp. 1279–1284. https://doi.org/10.1016/j.biortech.2008.08.045

Martínez-Salgado, S. J., Andrade-Hoyos, P., Romero-Arenas, O., Villa-Ruano, N., Landeta-Cortés, G., and Rivera-Tapia, J. A., 2021. Control in vitro de Fusarium sp. Asociado al cultivo de cebolla mediante Trichoderma harzianum. Revista Mexicana de Fitopatología, Mexican Journal of Phytopathology, 39(2), Art. 2. https://doi.org/10.18781/R.MEX.FIT.2101-4

Matos, M., Valdivia, A., Rodríguez, Z., Bocourt, R., Brizuela, M. A., Portilla, Y., Rubio, Y., & Ramírez, H. L., 2018. Production of xylanases by Bacillus subtilis E44 under submerged fermentation conditions. Cuban Journal of Agricultural Science, 52(3). Disponible en línea: https://www.redalyc.org/journal/1930/193060480010/193060480010.pdf

Meléndez-Hernández, P. A., Hernández-Beltrán, J. U., Hernández-Guzmán, A., Morales-Rodríguez, R., Torres-Guzmán, J. C., and Hernández-Escoto, H., 2021. Comparative of alkaline hydrogen peroxide pretreatment using NaOH and Ca (OH) 2 and their effects on enzymatic hydrolysis and fermentation steps. Biomass Conversion and Biorefinery, 11(5), pp. 1897–1907. https://doi.org/10.1007/s13399-019-00574-3

Mendoza-Infante, N. G., Debernardi de la Vequia, H., Hidalgo-Contreras, J., Mugica-Alvarez, V., & Hernandez-Martinez, R., 2022. Fungal microbiota of sugarcane straw and their ability to produce hydrolytic enzymes. Revista de la facultad de agronomia de la universidad del zulia, 39(1). https://doi.org/10.47280/RevFacAgron(LUZ).v39.n1.08

Miller, G. L., 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical chemistry, 31(3), pp. 426–428. https://doi.org/10.1021/ac60147a030

Moran-Aguilar, M. G., Costa-Trigo, I., Calderón-Santoyo, M., Domínguez, J. M., and Aguilar-Uscanga, M. G., 2021. Production of cellulases and xylanases in solid-state fermentation by different strains of Aspergillus niger using sugarcane bagasse and brewery spent grain. Biochemical Engineering Journal, 172, 108060p. https://doi.org/10.1016/j.bej.2021.108060

Naher, L., Fatin, S. N., Sheikh, M. A. H., Azeez, L. A., Siddiquee, S., Zain, N. M., and Karim, S. M. R., 2021. Cellulase Enzyme Production from Filamentous Fungi Trichoderma reesei and Aspergillus awamori in Submerged Fermentation with Rice Straw. Journal of Fungi, 7(10), 868p. https://doi.org/10.3390/jof7100868

Niju, S., Nishanthini, T., and Balajii, M., 2020. Alkaline hydrogen peroxide-pretreated sugarcane tops for bioethanol production—A process optimization study. Biomass Conversion and Biorefinery, 10(1), pp. 149–165. https://doi.org/10.1007/s13399-019-00524-z

Niju, S., and Swathika, M., 2019. Delignification of sugarcane bagasse using pretreatment strategies for bioethanol production. Biocatalysis and Agricultural Biotechnology, 20, 101263p. https://doi.org/10.1016/j.bcab.2019.101263

Nogueira, D. P., Vasconcelos, L. C., Castiglioni, G. L., Freitas, F. F., and Seolatto, A. A., 2021. Comparative study of the efficiency of pretreatment with alkaline hydrogen peroxide in pineapple bagasse in different granulometries submitted to acid and enzymatic saccharification. Research, Society and Development, 10(1). https://doi.org/10.33448/rsd-v10i1.9902

Prajapati, B. P., Jana, U. K., Suryawanshi, R. K., and Kango, N., 2020. Sugarcane bagasse saccharification using Aspergillus tubingensis enzymatic cocktail for 2G bio-ethanol production. Renewable Energy, 152, pp. 653-663. https://doi.org/10.1016/j.renene.2020.01.063

Rodríguez-Zúñiga, U. F., Neto, V. B., Couri, S., Crestana, S., and Farinas, C. S., 2014. Use of spectroscopic and imaging techniques to evaluate pretreated sugarcane bagasse as a substrate for cellulase production under solid-state fermentation. Applied biochemistry and biotechnology, 172(5), pp. 2348-2362. https://doi.org/10.1007/s12010-013-0678-0

Rukmana, S., Ansori, A. N., Kusala, M. K., Utami, U., Wahyudi, D., and Mandasari, A. A., 2020. Molecular identification of trichoderma isolates from sugarcane bagasse based on internal transcribed spacer (ITS) rDNA. Research Journal of Pharmacy and Technology, 13(7), pp. 3300-3304. https://doi.org/10.5958/0974-360X.2020.00585.5

Sankaran, R., Cruz, R. A. P., Pakalapati, H., Show, P. L., Ling, T. C., Chen, W.-H., and Tao, Y., 2020. Recent advances in the pretreatment of microalgal and lignocellulosic biomass: A comprehensive review. Bioresource technology, 298, 122476p. https://doi.org/10.1016/j.biortech.2019.122476

Saroj, P., Manasa, P., and Narasimhulu, K., 2018. Characterization of thermophilic fungi producing extracellular lignocellulolytic enzymes for lignocellulosic hydrolysis under solid-state fermentation. Bioresources and Bioprocessing, 5(1), pp. 1-14. https://doi.org/10.1186/s40643-018-0216-6

Savín-Molina, J., Hernández-Montiel, L. G., Ceiro-Catasú, W., Ávila-Quezada, G. D., Palacios-Espinosa, A., Ruiz-Espinoza, F. H., and Romero-Bastidas, M., 2021. Caracterización morfológica y potencial de biocontrol de especies de Trichoderma aisladas de suelos del semiárido. Revista mexicana de fitopatología, 39(3), pp. 435–451. https://doi.org/10.18781/r.mex.fit.2106-7

Sheng, Y., Lam, S. S., Wu, Y., Ge, S., Wu, J., Cai, L., Huang, Z., Van Le, Q., Sonne, C., and Xia, C., 2021. Enzymatic conversion of pretreated lignocellulosic biomass: A review on influence of structural changes of lignin. Bioresource technology, 324, 124631p. https://doi.org/10.1016/j.biortech.2020.124631

Soria-Noroña, L. C., and López-Almeida, J. V., 2020. Determinación del Índice de Potencia lipolítico y proteolítico en bacterias psicrótolerantes de las aguas termales de los Ilinizas. Dominio de las Ciencias, 6(2), pp. 1091–1196. https://doi.org/10.23857/dc.v6i2.1269

Su, T., Zhao, D., Khodadadi, M., and Len, C., 2020. Lignocellulosic biomass for bioethanol: Recent advances, technology trends, and barriers to industrial development. Current Opinion in Green and Sustainable Chemistry, 24, pp. 56–60. https://doi.org/10.1016/j.cogsc.2020.04.005

Vázquez-Montoya, E. L., Castro-Ochoa, L. D., Maldonado-Mendoza, I. E., Luna-Suárez, S., and Castro-Martínez, C., 2020. Moringa straw as cellulase production inducer and cellulolytic fungi source. Revista argentina de microbiología, 52(1), pp. 4-12. https://doi.org/10.1016/j.ram.2019.02.005

Wu, X., Luo, N., Xie, S., Zhang, H., Zhang, Q., Wang, F., and Wang, Y., 2020. Photocatalytic transformations of lignocellulosic biomass into chemicals. Chemical Society Reviews, 49(17), pp. 6198–6223. https://doi.org/10.1039/D0CS00314J

Zhai, R., Hu, J., and Jin, M., 2022. Towards efficient enzymatic saccharification of pretreated lignocellulose: Enzyme inhibition by lignin-derived phenolics and recent trends in mitigation strategies. Biotechnology Advances, 61, 108044p. https://doi.org/10.1016/j.biotechadv.2022.108044

Zin, N. A., and Badaluddin, N. A., 2020. Biological functions of Trichoderma spp. for agriculture applications. Annals of Agricultural Sciences, 65(2), pp. 168-178. https://doi.org/10.1016/j.aoas.2020.09.003

URN: http://www.revista.ccba.uady.mx/urn:ISSN:1870-0462-tsaes.v26i2.48310

DOI: http://dx.doi.org/10.56369/tsaes.4831

Copyright (c) 2023 Serafín Perez Contreras, Ricardo Hernandez Martínez, Francisco Hernandez Rosas, Jose Andres Herrera Corredor, Elizabeth Del Carmen Varela Santos

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.