IMPACTS OF PROBIOTICS WITH OR WITHOUT ORGANIC ACIDS AS DIETARY SUPPLEMENTS ON GROWTH PERFORMANCE, CARCASS QUALITY, DIGESTIBILITY, INTESTINAL DEVELOPMENT, AND GUT MICROBIOTA OF BROILER CHICKS
Abstract
Keywords
Full Text:
PDFReferences
Attia, Y.A., Burke, W.H., Yamani, K.A. and Jensen, L.S., 1995. Daily energy allotments and performance of broiler breeders.: 2. Females. Poultry Science, 74(2), pp.261-270. https://doi.org/10.3382/ps.0720042
Abdel-Raheem, S.M., Abd-Allah, S.M. and Hassanein, K.M., 2012. The effects of prebiotic, probiotic and synbiotic supplementation on intestinal microbial ecology and histomorphology of broiler chickens. International Journal for Agro Veterinary and Medical Sciences, 6(4), pp.277-289. http://doi.org/10.5455/ijavms.156
Abdo, M. and Zeinb, A., 2004. Efficacy of acetic acid in improving the utilization of low protein-low energy broiler diets. Egyptian Poultry Science, 24, pp.123-141.
Abudabos, A.M., Alyemni, A.H., Dafalla, Y.M. and Khan, R.U., 2017. Effect of organic acid blend and Bacillus subtilis alone or in combination on growth traits, blood biochemical and antioxidant status in broilers exposed to Salmonella typhimurium challenge during the starter phase. Journal of Applied Animal Research, 45(1), pp.538-542. http://doi.org/10.1080/09712119.2016.1219665
Ahsan-ul-Haq, M.T.C., Ahmad, F., Shafi, J. and Ashraf, M., 2014. Effect of dietary acidification with citric acid on carcass characteristics, haemogram and serum metabolite values of broiler chicken. Pakistan Journal Life and Social Science, 12, pp.36-41.
Al-Sultan, S.I., Abdel-Raheem, S.M., El-Ghareeb, W.R. and Mohamed, M.H., 2016. Comparative effects of using prebiotic, probiotic, synbiotic and acidifier on growth performance, intestinal microbiology and histomorphology of broiler chicks. Japanese Journal of Veterinary Research, 64(Supplement 2), pp. S187-S195. http://doi.handle.net/2115/62006
Attia, F.M., 2018. Effect of organic acids supplementation on nutrients digestibility, gut microbiota and immune response of broiler chicks. Egyptian Poultry Science Journal, 38(1), pp. 223 – 239. http://doi.org/10.21608/EPSJ.2018.5602
Ayasan, T., 2013. Effects of dietary inclusion of protexin (probiotic) on hatchability of Japanese quails. Indian Journal Animal Science, 83(1), pp. 78-81.
Biggs, P. and Parsons, C.M., 2008. The effects of several organic acids on growth performance, nutrient digestibility, and cecal microbial populations in young chicks. Poultry Science, 87(12), pp. 2581 – 2589. https://doi.org/10.3382/ps.2008-00080
Choct, M., 2009. Managing gut health through nutrition. British Poultry Science, 50(1), pp. 9 –15. http://doi.org/10.1080/00071660802538632
Dai, D., Qiu, K., Zhang, H.J., Wu, S.G., Han, Y.M., Wu, Y.Y., Qi, G.H. and Wang, J., 2021. Organic acids as alternatives for antibiotic growth promoters alter the intestinal structure and microbiota and improve the growth performance in broilers. Frontiers in Microbiology, 11, pp. 618144. https://doi.org/10.3389/fmicb.2020.618144
Dauksiene, A., Ruzauskas, M., Gruzauskas, R., Zavistanaviciute, P., Starkute, V., Lele, V., Klupsaite, D., Klementaviciute, J. and Bartkiene, E., 2021. A comparison study of the caecum microbial profiles, productivity and production quality of broiler chickens fed supplements based on medium chain fatty and organic acids. Animals, 11(3), pp.610. https://doi.org/10.3390/ani11030610
Dibner, J.J. and Buttin, P., 2002. Use of organic acids as a model to study the impact of gut microflora on nutrition and metabolism. Journal of Applied Poultry Research, 11(4), pp. 453-463. https://doi.org/10.1093/japr/11.4.453
Duncan, O.D. and Duncan, B., 1955. A methodological analysis of segregation indexes. American Sociological Review, pp. 210-217. https://inequality.stanford.edu/sites/default/files/media/_media/pdf/Classic_Media/Dudley_1955_Measurement.pdf
Elbaz, A.M., Ibrahim, N.S., Shehata, A.M., Mohamed, N.G. and Abdel-Moneim, A.M.E., 2021. Impact of multi-strain probiotic, citric acid, garlic powder or their combinations on performance, ileal histomorphometry, microbial enumeration and humoral immunity of broiler chickens. Tropical Animal Health and Production, 53(1), pp. 1-10. https://doi.org/10.1007/s11250-021-02554-0
Fallah, R., 2016. Productive performance, carcass trait and blood parameters of broiler chickens fed different levels of dried whey and protexin probiotic. International Journal of Basic Sciences Applied Research, 4, pp. 240-247.
Galli, G.M., Aniecevski, E., Petrolli, T.G., da Rosa, G., Boiago, M.M., Simões, C.A., Wagner, R., Copetti, P.M., Morsch, V.M., Araujo, D.N. and Marcon, H., 2021. Growth performance and meat quality of broilers fed with microencapsulated organic acids. Animal Feed Science and Technology, 271, pp. 114706. https://doi.org/10.1016/j.anifeedsci.2020.114706
Gao, Y.Y., Zhang, X.L., Xu, L.H., Peng, H., Wang, C.K. and Bi, Y.Z., 2019. Encapsulated blends of essential oils and organic acids improved performance, intestinal morphology, cecal microflora, and jejunal enzyme activity of broilers. Czech Journal of Animal Science, 64(5), pp. 189-198. https://doi.org/10.17221/172/2018-CJAS
Ghazalah, A.A., Atta, A.M., Elkloub, K., Moustafa, M.E.L. and Riry, F.S., 2011. Effect of dietary supplementation of organic acids on performance, nutrients digestibility and health of broiler chicks. International Journal of Poultry Science, 10(3), pp. 176-184.
Goh, C.H., Loh, T.C., Foo, H.L. and Nobilly, F., 2020. Fecal microbial population and growth in broiler fed organic acids and palm fat-composed diet. Tropical Animal Science Journal, 43(2), pp. 151-157. https://doi.org/10.5398/tasj.2020.43.2.151
Huyghebaert, G., Ducatelle, R. and Van Immerseel, F., 2011. An update on alternatives to antimicrobial growth promoters for broilers. The Veterinary Journal, 187(2), pp. 182-188. https://doi.org/10.1016/j.tvjl.2010.03.003
Kabir, L.S.M., 2009. The role of probiotics in the poultry industry. International Journal of Molecular Sciences, 10(8), pp. 3531-3546. https://doi.org/10.3390/ijms10083531
Kim, J.W., Kim, J.H. and Kil, D.Y., 2015. Dietary organic acids for broiler chickens: a review. Revista Colombiana de Ciencias Pecuarias, 28(2), pp. 109-123. https://doi.org/10.17533/udea.rccp.v28n2a01
Kipper, M., Andretta, I., Lehnen, C.R., Lovatto, P.A. and Monteiro, S.G., 2013. Meta-analysis of the performance variation in broilers experimentally challenged by Eimeria spp. Veterinary Parasitology, 196(1-2), pp. 77-84. https://doi.org/10.1016/j.vetpar.2013.01.013
Leeson, S., Namkung, H., Antongiovanni, M. and Lee, E.H., 2005. Effect of butyric acid on the performance and carcass yield of broiler chickens. Poultry Science, 84(9), pp. 1418-1422. https://doi.org/10.1093/ps/84.9.1418
Liu, W., Yan, X.G., Yang, H.M., Zhang, X., Wu, B., Yang, P.L. and Ban, Z.B., 2020. Metabolizable and net energy values of corn stored for 3 years for laying hens. Poultry Science, 99(8), pp. 3914-3920. https://doi.org/10.1016/j.psj.2020.03.041
Makled, M.N., Abouelezz, K.F.M., Gad-Elkareem, A.E.G. and Sayed, A.M., 2019. Comparative influence of dietary probiotic, yoghurt, and sodium butyrate on growth performance, intestinal microbiota, blood hematology, and immune response of meat-type chickens. Tropical Animal Health and Production, 51(8), pp. 2333-2342. https://doi.org/10.1007/s11250-019-01945-8
Mallo, J.J., Puyalto, M. and Rao, S.R., 2012. Evaluation of the effect of sodium butyrate addition to broiler diets on energy and protein digestibility, productive parameters and size of intestinal villi of animals. Feed Compounder, 32(1), pp. 30-33.
National Research Council, 1994. Nutrient requirements of poultry: Ninth revised edition, 1994. Washington, DC: The National Academies Press. http://doi.org/10.17226/2114
Ndelekwute, E.K., Assam, E.D., Unah, U.L., Assam, E.M. and Okonkwo, A.C., 2019. Antibacterial action and dietary effect of lemon juice on nutrient digestibility and growth performance of broiler chickens. Nigerian Journal of Animal Production, 46(2), pp. 102-110. https://doi.org/10.51791/njap.v46i2.17
Nguyen, D.H. and Kim, I.H., 2020. Protected organic acids improved growth performance, nutrient digestibility, and decreased gas emission in broilers. Animals, 10(3), pp. 416. https://doi.org/10.3390/ani10030416
Nourmohammadi, R., Hosseini, S.M. and Farhangfar, H., 2010. Influence of citric acid and microbial phytase on growth performance and carcass characteristics of broiler chickens. American Journal of Animal and Veterinary Sciences, 5(4), pp.282-288. https://doi.org/10.3844/ajavsp.2010.282.288
Okuneye, O.J., Adeoye, A.T., Oloso, N.O., Adekunle, O.F. and Fasanmi, O.G., 2016. Performance and physiological responses of Salmonella enteritidis challenged broilers fed diets containing antibiotic, probiotic and aromabiotic. Journal of Dairy, Veterinary and Animal Research, 3(3), pp. 1-6. https://doi.org/10.15406/jdvar.2016.03.00081
Omar, M.A., 2014. Economic evaluation of probiotic (Lactobacillus acidophilus) using in different broiler breeds within Egypt. Benha Veterinary Medicine Journal, 26(2), pp. 52-60.
Rezaian, M. and Hamedi, S., 2007. Histological study of the caecal tonsil in the cecum of 4–6 months old white leghorn chicks. American Journal of Animal and Veterinary Science, 2, pp. 50-54. https://doi.org/10.3844/ajavsp.2007.50.54
Riad, S.A., Safaa, H.M., Mohamed, F.R., Siam, S.S. and El-Minshawy, H.A., 2010. Influence of probiotic, prebiotic and/or yeast supplementation in broiler diets on the productivity, immune response and slaughter traits. Journal of Animal and Poultry Production, 1(2), pp. 45-60. https://doi.10.21608/JAPPMU.2010.86092
Roe, M.T. and Pillai, S.D., 2003. Monitoring and identifying antibiotic resistance mechanisms in bacteria. Poultry Science, 82(4), pp. 622-626. https://doi.org/10.1093/ps/82.4.622
Saleem, K., Rahman, A., Pasha, T.N., Mahmud, A. and Hayat, Z., 2020. Effects of dietary organic acids on performance, cecal microbiota, and gut morphology in broilers. Tropical Animal Health and Production, 52(6), pp. 3589-3596. https://doi.org/10.1007/s11250-020-02396-2
Sanders, M.E., 2008. Probiotics: definition, sources, selection, and uses. Clinical Infectious Diseases, 46(Supplement2), pp. S58-S61. https://doi.org/10.1086/523341
Silva, T.R.G., do Nascimento, M.C.O. and da Silva, N.C., 2010. Uso de óleosessenciais na dieta de suínos em substituiçãoa os antimicrobianos. Acta Veterinaria Brasilica, 4(2), pp. 70-73. https://doi.org/10.21708/avb.2010.4.2.1754
Van Immerseel, F., Russell, J.B., Flythe, M.D., Gantois, I., Timbermont, L., Pasmans, F., Haesebrouck, F. and Ducatelle, R., 2006. The use of organic acids to combat Salmonella in poultry: a mechanistic explanation of the efficacy. Avian Pathology, 35(3), pp. 182-188.https://doi.org/10.1080/03079450600711045
Vinus, N.S. and Tewatia, B.S., 2017. Organic acids as alternatives to antibiotic growth promoters in poultry. The Pharma Innovation Journal, 6, pp.164-9.
Wu, Y., Zhou, Y., Lu, C., Ahmad, H., Zhang, H., He, J., Zhang, L. and Wang, T., 2016. Influence of butyrate loaded clinoptilolite dietary supplementation on growth performance, development of intestine and antioxidant capacity in broiler chickens. Poultry Since Journal, 11(4), pp. e0154410. https://doi.org/10.1371/journal.pone.0154410
Young, K.M. and Foegeding, P.M., 1993. Acetic, lactic and citric acids and pH inhibition of Listeria monocytogenes Scott A and the effect on intracellular pH. The Journal of Applied Bacteriology, 74(5), pp. 515-520.
Zhang, W.H., Jiang, Y., Zhu, Q.F., Gao, F., Dai, S.F., Chen, J. and Zhou, G.H., 2011. Sodium butyrate maintains growth performance by regulating the immune response in broiler chickens. British Poultry Science, 52(3), pp. 292-301. https://doi.org/10.1080/00071668.2011.578121
URN: http://www.revista.ccba.uady.mx/urn:ISSN:1870-0462-tsaes.v26i3.46933
DOI: http://dx.doi.org/10.56369/tsaes.4693
Copyright (c) 2023 K.F.M. Abouelezz, M.N. Makled, M. Eldeeb, M.A. Habib
This work is licensed under a Creative Commons Attribution 4.0 International License.