EVALUATING THE INFLUENCE OF SOIL AND SOCIOECONOMIC FACTORS ON AGRICULTURAL EFFICIENCY

Eliane Gonçalves Gomes, Elaine Cristina Cardoso Fidalgo, Maurício Rizzato Coelho, Elton de Oliveira, Aline Pacobahyba de Oliveira, Alba Leonor da Silva Martins

Abstract


Background: Given the importance of the agricultural activity for the economic development of the state of Rio de Janeiro, Brazil, in this paper we assess the effect of the environmental parameters related to soils and socioeconomic factors on the performance of the municipalities. Objective: To identify factors that influence on agricultural production performance, as well as the directions of such influences (positive or negative). Methodology: A two-stage Data Envelopment Analysis (DEA) was chosen for this analysis. The performance scores are computed considering land, labor, and capital (or technology) as inputs, and the value of crops and of livestock production as outputs. Results: The average efficiency was 0.5509 and 12 municipalities out of the 89 assessed were 100% efficient. A high level of susceptibility to erosion significantly and negatively influences the efficiency scores. The suitability of land for agriculture and for livestock are positively associated with performance. The presence of family-based farmers favors the agricultural performance of the assessed municipalities. Implications: These results may support public policies related to land use and soil governance. Conclusions: The proposed two-stage DEA approach was useful to assess the influence of factors related to soils and socioeconomic indicators on the agricultural performance of the municipalities in the state of Rio de Janeiro. 

Keywords


performance assessment; soil erosion; land use; land suitability; family farming

Full Text:

PDF

References


Acevedo-Osorio, A., Przychodzka, S.O. and Pinilla, J.E.O., 2020. Contributions of agrobiodiversity to the sustainability of family farming in Colombia. Tropical and Subtropical Agroecosystems, 23, pp. 1-18. https://www.revista.ccba.uady.mx/ojs/index.php/TSA/article/view/2992

Almeida, K.N.S., Silva, J.B.L., Nóbrega, J.C.A., Ratke, R.F. and Souza, K.B., 2019. Aptidão agrícola dos solos do estado do Piauí. ,Nativa, 7, pp. 233-238. https://doi.org/10.31413/nativa.v7i3.7119

Ananda, J. and Herath. G., 2003. Soil erosion in developing countries: a socio-economic appraisal. Journal of Environmental. Management, 68, pp. 343-353. https://doi.org/10.1016/S0301-4797(03)00082-3

André, R.G.B., Marques, V.S., Pinheiro, F.M.A and Ferraudo, A.S., 2008. Identificação de regiões pluviometricamente homogêneas no estado do Rio de Janeiro, utilizando-se valores mensais. Revista Brasileira de Meteorologia, 23, pp. 501–509. https://doi.org/10.1590/S0102-77862008000400009

Angulo Meza, L., Biondi Neto, L., Soares de Mello, J.C.C.B. and Gomes, E.G., 2005. ISYDS - Integrated System for Decision Support (SIAD-Sistema Integrado de Apoio à Decisão): a software package for data envelopment analysis model. Pesquisa Operacional, 25: 493-503. https://doi.org/10.1590/S0101-74382005000300011

Banker, R.D., Charnes, A., Cooper, W.W., Swarts J. and Thomas, D.A., 1989. An introduction to data envelopment analysis with some of its models and their uses. Research in Governmental and Non-Profit Accounting, 5, pp. 125–163. http://iiif.library.cmu.edu/file/Cooper_box0010c_fld00033_bdl0001_doc0001/Cooper_box0010c_fld00033_bdl0001_doc0001.pdf

Bedná?, M. and Šarapatka, B., 2018. Relationships between physical–geographical factors and soil degradation on agricultural land. Environmental Resources, 164, pp. 660-668. https://doi.org/10.1016/j.envres.2018.03.042

Bonfant, A., Basile, A. and Bouma, J., 2020. Targeting the soil quality and soil health concepts when aiming for the United Nations Sustainable Development Goals and the EU Green Deal. Soil, 6, pp. 453-466. https://doi.org/10.5194/soil-6-453-2020

Borrelli, P., Robinson, D.A., Panagos, P., Lugato, E., Yang, J.E., Alewell, C., Wuepper, D., Montanarella, L. and Ballabio, C., 2020. Land use and climate change impacts on global soil erosion by water (2015-2070). PNAS, 117, pp. 21994-22001. https://doi.org/10.1073/pnas.2001403117

Carvalho Filho, A., Lumbreras, J.F., Amaral, F.C.S., Naime, U.J., Santos, R.D., Calderano Filho, B., Lemos, A.L., Oliveira, R.P. and Aglio, M.L.D., 2003. Avaliação da aptidão agrícola das terras do Estado do Rio de Janeiro. Rio de Janeiro: Embrapa Solos. (Boletim de Pesquisa e Desenvolvimento, 30). https://www.infoteca.cnptia.embrapa.br/infoteca/bitstream/doc/1144296/1/CNPS-BPD-30-2003.pdf

Carvalho Filho, A., Lumbreras, J.F., Coelho, M.R., Oliveira, A.P., Silva, E.F., Dart, R.O., Baca, J.F.M., Freitas, P.L., Medeiros, P.S.C., Silva, G.B.S. and Pontoni, D.R., 2021. Mapa de avaliação da aptidão agrícola das terras do Brasil, escala 1:500.000 (1ª. Aproximação). Rio de Janeiro: Embrapa Solos. https://geoinfo.cnps.embrapa.br/layers/geonode%3Abra_aptidao_2021_v1

CATI. Coordenadoria de Assistência Técnica Integral. Secretaria de Agricultura e Abastecimento, 2000. Programa Estadual de Microbacias Hidrograficas. [CD-ROM] São Paulo: CATI.

Chicota, R., Hurtado, A.L.B. and Van Lier, Q.J., 2005. Spatio-temporal variability of soil water tension in a tropical soil in Brazil. Geoderma, 133, pp. 231-243. https://doi.org/10.1016/j.geoderma.2005.07.010

Coelli, T.J., Prasada Rao, D.D., O’Donnell, C.J. and Battese, G.E., 2005. An introduction to efficiency and productivity analysis. 2.ed., New York: Springer.

Cong, S., 2021. Factors affecting agriculture. Journal of Plant Biology and Agriculture Sciences, 3, pp. 9. https://www.pulsus.com/scholarly-articles/factors-affecting-agriculture.pdf

Cook, W.D., Tone, K. and Zhu, J., 2014. Data envelopment analysis: Prior to choosing a model. Omega, 44, pp. 1–4. https://www.sciencedirect.com/science/article/pii/S0305048313000947

Cooper, W., Seiford, L.M. and Zhu, J., 2011. Handbook on Data Envelopment Analysis. Springer.

Dechen, S.C.F., Telles, T.S., Guimarães, M.F. and Maria, I.C., 2015. Perdas e custos associados à erosão hídrica em função das taxas de cobertura do solo. Bragantia, 74, pp. 224-233. https://doi.org/10.1590/1678-4499.0363

Delarmelinda, E.A., Wadt, P.G.S., Anjos, L.H.C., Masutti, C.S.M., Silva, E.F., Silva, M.B.E., Coelho, R.M., Shimizu, S.H. and Couto, W.H., 2011. Avaliação da aptidão agrícola dos solos do Acre por diferentes especialistas. Revista Brasileira de Ciência do Solo, 35, pp. 1841-1853. https://doi.org/10.1590/S0100-06832011000600001

Dyson, R.G., Allen, R., Camanho, A.S., Podinovski, V.V., Sarrico, C.S. and Shale, E.A., 2001. Pitfalls and protocols in DEA. European Journal of Operational Research, 132, pp. 245-259. https://doi.org/10.1016/S0377-2217(00)00149-1

EMATER-RIO 2021. Relatório de Atividades 2020. Niterói: Emater-Rio. http://www.emater.rj.gov.br/relatorioatividadecorr20.pdf

Emrouznejad, A. and Yang, G.-L., 2018. A survey and analysis of the first 40 years of scholarly literature in DEA: 1978–2016. Socio-Economic Planning Sciences, 61, pp. 4–8. https://doi.org/10.1016/j.seps.2017.01.008

Environmental Systems Research Institute, 2017. ArcGIS 10.5.1. Redlands: ESRI.

FAO. Food and Agriculture Organization, 2019. Soil erosion: the greatest challenge to sustainable soil management. Rome: Food and Agriculture Organization of the United Nations. http://www.fao.org/3/ca4395en/ca4395en.pdf

Ferraz, R.P.D., Simões, M., Lumbreras, J.F., Coelho, M.R., Baca, J.M., Freitas, P.L., Lima, E.P., Kuchler, P.C. and Almeida, M.B.F., 2021. Mapa de suscetibilidade dos solos à erosão hídrica do Brasil (Primeira aproximação). http://geoinfo.cnps.embrapa.br/documents/2916

Gallo, B.C., Demattê, J.A.M., Rizzo, R., Safanelli, J.L., Mendes, W.D.S., Lepsch, I.F., Sato, M.V., Romero, D.J. and Lacerda, M.P.C., 2018. Multi-temporal satellite images on topsoil attribute quantification and the relationship with soil classes and Geology. Remote Sensing, 10, pp. 1571. https://doi.org/10.3390/rs10101571

Gomes, E.G., Grego, C.R., Soares de Mello, J.C.C.B., Valladares, G.S., Mangabeira, J.A.C. and Miranda, E.E., 2009. Dependência espacial da eficiência do uso da terra em assentamento rural na Amazônia. Produção, 19, pp. 417-432. https://doi.org/10.1590/S0103-65132009000200015

Gomiero, T., 2016. Soil degradation, land scarcity and food security: reviewing a complex challenge. Sustainability, 8, pp. 281. https://doi.org/10.3390/su8030281

Grisel, P.N. and Assis, R.L., 2020. Condicionantes agroeconômicos para adoção de práticas sustentáveis em ambientes de montanha em Nova Friburgo (RJ). Nativa, 8, pp. 687-697. https://doi.org/10.31413/nativa.v8i5.10012

IBGE. Instituto Brasileiro de Geografia e Estatística, 2021. Cidades e Estados. IBGE. https://www.ibge.gov.br/cidades-e-estados/rj.html

IBGE. Instituto Brasileiro de Geografia e Estatística, 2019. Censo Agropecuário 2017. IBGE. https://sidra.ibge.gov.br/pesquisa/censo-agropecuario/censo-agropecuario-2017

Issaka, S. and Ashraf, M., 2017. Impacts of soil erosion and degradation on water quality: a review. Geology, Ecology and Landscapes, 1, pp. 1-11. https://doi.org/10.1080/24749508.2017.1301053

IUSS Working Group WRB, 2022. World Reference Base for Soil Resources. International soil classification system for naming soils and creating legends for soil maps. 4th edition. Vienna: International Union of Soil Sciences (IUSS). https://eurasian-soil-portal.info/wp-content/uploads/2022/07/wrb_fourth_edition_2022-3.pdf

Lal, R., 2015. Restoring soil quality to mitigate soil degradation. Sustainability, 7, pp. 5875-5895. https://doi.org/10.3390/su7055875

Lal, R., 2017. Soil erosion by wind and water: problems and prospects. In: R. Lal, ed. Soil erosion research methods. 2 ed. New York: Routledge: 1–10. https://doi.org/10.1201/9780203739358

Liu, J.S, Lu, L.Y.Y., Lu, W-M. and Lin, B.J.Y., 2013. A survey of DEA applications. Omega, 41, pp. 893–902. https://doi.org/https://doi.org/10.1016/j.omega.2012.11.004

Liu, J.S., Lu, L.Y.Y. and Lu, W-M., 2016. Research fronts in data envelopment analysis. Omega, 58, pp. 33–45. https://doi.org/10.1016/j.omega.2015.04.004

López Netto, A., Assis, R.L. and Aquino, A.M., 2017. Ações públicas para o desenvolvimento rural sustentável dos ambientes de montanha brasileiros. Desenvolvimento em Questão, 15, pp. 141-170. https://doi.org/10.21527/2237-6453.2017.39.141-170

Lumbreras, J.F., Naime, U.J., Carvalho Filho, A., Wittern, K.P., Shinzato, E., Dantas, M.E., Palmieri, F., Fidalgo, E.C.C., Calderano, S.B., Medina, A.I.M., Pimentel, J., Chagas, C.S., Goncalves, A.O., Martorano, L.G., Santos, L.C.O., Tôsto, S.G., Brandão, E.S., Anjos, G.T., Amaral, F.C.S., Lima, J.A.S, Valle, L.C.S., Pereira, N.R., Baruqui, A.M., Prado, R.B., Oliveira, R.P. and Aglio, M.L.D., 2003. Zoneamento agroecológico do Estado do Rio de Janeiro - ano 2003. Rio de Janeiro: Embrapa Solos. (Embrapa Solos. Boletim de pesquisa e desenvolvimento, 33). https://ainfo.cnptia.embrapa.br/digital/bitstream/item/162170/1/Zoneamento-RJ.PDF

Miguel, R.B., Peiter, P.C., Albuquerque, H., Coura, J.R., Moza, P.G., Costa, A.P., Brasil, P. and Suárez-Mutis, M.C. 2014. Malaria in the state of Rio de Janeiro, Brazil, an Atlantic Forest

area: an assessment using the health surveillance service. Memórias do Instituto Oswaldo Cruz,

, pp. 634–640. https://doi.org/10.1590/0074-0276130558

Montanarella, L., Badraoui, M., Chude, V., Costa, I.S.B., Mamo, T., Yemefack, M., Aulang, M.S., Yagi, K., Hong, S.Y., Vijarnsorn, P., Zhang, G.L., Arrouays, D., Black, H., Krasilnikov, P., Soboca, J., Alegre, J., Henriquez, C.R., Mendonça-Santos, M.L., Taboada, M., Victoria, D.E., Alshankiti, A., Panah, S.K.A., El Mustafa El Sheikh, E.A., Hempel, J., Pennock, D., Camps Arbestain, M. and Mckenzie, N., 2015. Status of the world’s soil resources. https://www.fao.org/3/i5199e/i5199e.pdf

Montanarella, L., Pennock, D.J., Mckenzie, N., Badraoui, M., Chude, V., Baptista, I., Mamo, T., Yemefack, M., Aulakh, M.S., Yagi, K., Hong, S.Y., Vijarnsorn, P., Zhang, G., Arrouays, D., Black, H., Krasilnikov, P., Sobocká, J., Alegre, J., Henriquez, C.R., Mendonça-Santos, M.L., Taboada, M., Espinosa-Victoria, D., Alshankiti, A., Alavipanah, S.K., Elsheikh, E.A.M., Hempel, J., Arbestain, M.C., Nachtergaele, F. and Vargas, R., 2016. World’s soils are under threat. Soil, 2, pp. 79-82. https://doi.org/10.5194/soil-2-79-2016

Mutyasira, V., Hoag, D., Pendell, D., Manning, D.T. and Berhe, M., 2018. Assessing the relative sustainability of smallholder farming systems in Ethiopian highlands. Agricultural Systems, 167, pp. 83–91. https://doi.org/10.1016/j.agsy.2018.08.006

Oliveira, E., Aquino, A.M., Assis, R.L., Souza, L.A. and Silva, F.C., 2021. Histórico, atualidades e desempenho produtivo da agricultura fluminense. Historia Ambiental Latinoamericana y Caribeña, 11, pp. 306-328. https://doi.org/10.32991/2237-2717.2021v11i1.p306-328

Peyrache, A., Rose, C. and Sicilia, G., 2020. Variable selection in Data Envelopment Analysis. European Journal of Operational Research, 282, pp. 644-659. https://www.sciencedirect.com/science/article/pii/S0377221719307842

Poesen, J., 2018. Soil erosion in the Anthropocene: research needs. Earth Surface Processes and Landforms, 43, pp. 64-84. https://doi.org/10.1002/esp.4250

Ramalho, E.A., Ramalho, J.J.S. and Henriques, P.D., 2010 Fractional regression models for second stage DEA efficiency analyses. Journal of Productivity Analysis, 34, pp. 239–255. https://doi.org/10.1007/s11123-010-0184-0

Ramalho Filho, A. and Beek, K.J., 1995. Sistema de avaliação da aptidão agrícola das terras. 3.ed. Rio de Janeiro: EMBRAPA-SNLCS.

Rensburg, T.M. and Mulugeta, E., 2016. Profit efficiency and habitat biodiversity: the case of upland livestock farmers in Ireland. Land Use Policy, 54, pp. 200-211. https://doi.org/10.1016/j.landusepol.2016.01.015

Resende, M., Curi, N., Resende, S.B.; Corrêa, G.F. and Ker, J.C., 2014. Pedologia: base para distinção de ambientes. 6.ed. Lavras: Editora UFLA.

Ribeiro, F.C.A., Lauria, D.C, Silva, J.I.R., Lima, E.S.A, Amaral-Sobrinho, N.M.B. and Perez, D.V., 2018a. Baseline and quality reference values for natural radionuclides in soils of Rio de Janeiro State, Brazil. Revista Brasileira de Ciência do Solo, 42. https://doi.org/10.1590/18069657rbcs20170146

Ribeiro, F.C.A., Silva, J.I.R., Lima, E.S.A, Amaral-Sobrinho, N.M.B., Perez, D.V. and Lauria, D.C, 2018b. Natural radioactivity in soils of the state of Rio de Janeiro (Brazil): Radiological characterization and relationships to geological formation, soil types and soil properties. Journal of Environmental Radioactivity, 182, pp. 34-43. https://www.sciencedirect.com/science/article/pii/S0265931X17307336?via%3Dihub

Santos, H.G., Jacomine, P.K.T., Anjos, L.H., Oliveira, V.A., Lumbreras, J.F., Coelho, M.R., Almeida, J.A., Araújo Filho, J.C., Oliveira, J.B. and Cunha, T.J.F., 2018. Sistema Brasileiro de Classificação de Solos. 5. ed. rev. ampl. Brasília, DF: Embrapa. http://ainfo.cnptia.embrapa.br/digital/bitstream/item/181677/1/SiBCS-2018-ISBN-9788570358172.epub

Silva, V.A., Curi, N., Marques, J.J.G., Carvalho, L.MT. and Santos, W.J.R.S., 2013. Mapa de solos, conhecimento de campo, inventário florestal e zoneamento ecológico-econômico como base para a aptidão agrícola das terras em Minas Gerais elaborada em SIG. Ciência e Agrotecnologia, 37. https://doi.org/10.1590/S1413-70542013000600007

Simar, L. and Wilson, P.W., 2011. Two-stage DEA: caveat emptor. Journal of Productivity Analysis, 36, pp. 205-218. https://doi.org/10.1007/s11123-011-0230-6

Souza, G. S., Gomes, E.G. and Alves, E.R.A., 2022. Two-part fractional regression model with conditional FDH responses: an application to Brazilian agriculture. Annals of Operation Resources, 314, pp. 393–409. https://link.springer.com/article/10.1007/s10479-020-03752-z

Souza, G.S., Gomes, E.G. and Alves, E.R.A., 2020. Estimativa de uma função de produção para a agricultura brasileira com base nos microdados do censo agropecuário de 2017. Revista de Política Agrícola, 29, pp. 65–82. https://www.gov.br/agricultura/pt-br/assuntos/politica-agricola/todas-publicacoes-de-politica-agricola/revista-de-politica-agricola/2020/revista-de-politica-agricola-no-4-2020

Vattuone, M.S., Monne, J.L.P., Rondán, J., Maldonado, M., Lefebvre, M. and Vattuone, M., 2018. Human?driven geomorphological processes and soil degradation in Northwest Argentina: a geoarchaeological view. Land Degradation and Development, 29, pp. 3852-3865. https://doi.org/10.1002/ldr.3128

Wambua, B.N. and Kithiia, S.M., 2014. Effects of soil erosion on sediments dynamics, food security and rural poverty in Makueni District, Eastern Kenya. International Journal of Applied Science and Technology, 4, pp. 101-107. https://atif.sobiad.com/index.jsp?modul=makale-goruntule&id=Xru7-nUBu-adCBSET76E




URN: http://www.revista.ccba.uady.mx/urn:ISSN:1870-0462-tsaes.v26i2.46730

DOI: http://dx.doi.org/10.56369/tsaes.4673



Copyright (c) 2023 Eliane Gonçalves Gomes, Elaine Cristina Cardoso Fidalgo, Maurício Rizzato Coelho, Elton Oliveira, Aline Pacobahyba de Oliveira, Alba Leonor da Silva Martins

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.