COMPARISON OF IMPROVED CLONES OF SWEET POTATO (Ipomoea batatas [L.] Lam) IN THE YIELD AND BIOETHANOL CONTENT OF RESERVING ROOTS
Abstract
Keywords
Full Text:
PDFReferences
Adebola, P. O., Shegro, A., Laurie, S. M., Zulu, L. N. and Pillay, M., 2013. Genotype x environment interaction and yield stability estimate of some sweet potato [Ipomoea batatas (L.) Lam] breeding lines in South Africa. Journal of Plant Breeding and Crop Science, 5, pp. 182-186. http://doi.org/10.5897/JPBCS2013.0387
Álvarez, C., González, A., Ballesteros, I., Negro, M. J., 2021. Production of xylooligo saccharides, bioethanol, and lignin from structural components of barley straw pretreated with a steam explosion. Bioresour Technology, 342, pp. 125953. http://doi.org/10.1016/j.biortech.2021.125953
Anwar, M., Rasul, M. G. and Ashwath, N., 2019. The efficacy of multiple-criteria design matrix for biodiesel feedstock selection. Energy Conversion and Management, 198, pp. 111790. http://doi.org/10.1016/j.enconman.2019.111790
Arana, F. y Vilquiniche, W., 2017. Comparativo de rendimiento de tres clones de camote (Ipomoea batatas L.) bajo cuatro densidades de siembra en el Valle Del Santa – Ancash. Tesis. Universidad Nacional Del Santa. . Disponible en: [Consultado el 2 de marzo del 2022].
Ayeleso, T. B., Ramachela, K. and Mukwevho, E., 2016. A review of therapeutic potentials of sweet potato: Pharmacological activities and influence of the cultivar. Tropical Journal of Pharmaceutica research, 15, pp. 2751-2761. http://doi.org/10.4314/tjpr.v15i12.31
Buši?, A, Mardetko, N., Kundas, S., Morzak, G., Belskaya, H., Šantek, M. I., Komes, D., Novak, S. and Šantek, B., 2018. Bioethanol production from renewable raw materials and its separation and purification: a review, food technol. Biotechnol, 56, pp. 289-311. http://doi.org/10.17113/ftb.56.03.18.5546
Cavalcanti, M. T., Farias, N. S., Cavalcante, A. N., Gonçalves, M. C., Silva, A. S. and Candeia, R. A., 2019. Morphological structure and crystallinity of ‘Rainha’ sweet potato starch by heat–moisture treatment. Polímeros, 29, pp. e2019016. http://doi.org/10.1590/0104-1428.03917
Carnevalle, T., Menezes, A., Gomes, A., Silva, M., Gaspareto, L. and Morais, P., 2022. Fungal amylases applied to the sweet potato starch for bioethanol production. Research, Society and Development, 11, pp. e136111032583. http://doi.org/10.33448/rsd-v11i10.32583
Chalwe, A., Chiona, M., Sichilima, S., Njovu, J., Chama, C. and Ndhlovu, D., 2017. Genotype stability index for root yield and tolerance to Sweet potato weevil (Cylas puncticolis): A tool for identifying climate smart varieties. Open Agriculture, 2, pp. 166-174. https://doi.org/10.1515/opag-2017-0017
Díaz, M. J., Moya, M. and Castro, E., 2022. Bioethanol Production from Steam-Exploded Barley Straw by Co-Fermentation with Escherichia coli SL100. Agronomy, 12, pp. 874. http://doi.org/10.3390/agronomy12040874
Duan, W., Zhang, H., Xie, B., Wang, B. and Zhang, L., 2019. Impacts of nitrogen fertilization rate on the root yield, starch yield and starch physicochemical properties of the sweet potato cultivar Jishu 25. PLoS ONE, 14, pp. e0221351. http://doi.org/10.1371/journal.pone.0221351
Ebem, E., Afuape, S., Chukwu, S. and Ubi, B., 2021. Genotype × Environment Interaction and Stability Analysis for Root Yield in Sweet Potato [Ipomoea batatas (L.) Lam]. Frontiers in Agronomy, 3, pp. 665564. http://doi.org/10.3389/fagro.2021.665564
Flores, A., 2019. Evaluación de Rendimiento de Nueve Clones Promisorios de Ipomoea batatas L. “camote” en Barranca, Huaral y Cañete. Tesis. Universidad Nacional José Faustino Sánchez Carrión. Disponible en: [Consultado el 5 de febrero del 2022].
Hernández, M., Torruco, J., Guerrero, L. y Bentacur, D., 2008. Caracterización fisicoquímica de almidones de tubérculos cultivados en Yucatán, México. Ciência e Tecnologia de Alimentos, 28, pp. 718-726. http://doi.org/10.1590/S0101-20612008000300031
Jairoun, A. A., Al-Hemyari, S. S. and Shahwan, M., 2021. The pandemic of COVID-19 and its implications for the purity and authenticity of alcohol-based hand sanitizers: The health risks associated with falsified sanitizers and recommendations for regulatory and public health bodies. Research in social & administrative pharmacy, 17, pp. 2050–2051. http://doi.org/10.1016/j.sapharm.2020.04.014
Jena, N. and Kar, M. K., 2019. Ethanol production from various plant sources using Saccharomyces cerevisiae. International Journal of Chemical, 7, pp. 2968–2971.
Ghazanfar, M., Irfan, M., Nadeem, M., Shakir, H. A., Khan, M., Ahmad, I., Saeed, S., Chen, Y. and Chen, L., 2022. Bioethanol Production Optimization from KOH-Pretreated Bombax ceiba Using Saccharomyces cerevisiae through Response Surface Methodology. Fermentation, 8, pp. 148. http://doi.org/10.3390/fermentation8040148
Jin, Y, Fang, Y., Zhang, G., Zhou, L. and Zhao, H., 2012. Comparison of ethanol production performance in 10 varieties of sweet potato at different growth stages. Acta Oecol, 44, pp. 33-37. http://doi.org/10.1016/j.actao.2012.05.008
Karan, Y.B. and ?anli Ö.G., 2021. The assessment of yield and quality traits of sweet potato (Ipomoea batatas L.) genotypes in middle Black Sea region, Turkey. PLoS ONE, 16, pp. e0257703. http://doi.org/10.1371/journal.pone.0257703
Karuniawan, A., Maulana, H., Ustari, D., Dewayani, S., Solihin, M., Amien, S. and Arifin, M., 2021. Yield stability analysis of orange - Fleshed sweet potato in Indonesia using AMMI and GGE biplot. Heliyon, 7, pp. e06881. http://doi.org/10.1016/j.heliyon.2021.e06881
Lareo, C. and Ferrari, M.D., 2019. Sweet Potato as a Bioenergy Crop for Fuel Ethanol Production: Perspectives and Challenges. In: Bioethanol Production from Food Crops. Sustainable Sources, Interventions, and Challenges. Bhubaneswar, India. Academic Press. Pp. 115-147. http://doi.org/10.1016/B978-0-12-813766-6.00007-2
Laurie, S.M., Bairu, M.W. and Laurie, R.N., 2022. Analysis of the Nutritional Composition and Drought Tolerance Traits of Sweet Potato: Selection Criteria for Breeding Lines. Plants, 11, pp. 1804. http://doi.org/10.3390/plants11141804
Li, Y., Zhao, L., Lin, L., Li, E., Cao, Q. and Wei, C., 2022. Relationships between X-ray Diffraction Peaks, Molecular Components, and Heat Properties of C-Type Starches from Different Sweet Potato Varieties. Molecules, 27, pp. 3385. http://doi.org/10.3390/molecules27113385
Liao, L., Liu, H., Zengpeng, G. and Wu, W., 2019. Structural properties of sweet potato starch and its vermicelli quality as affected by heat-moisture treatment. International Journal of Food Properties, 22, pp. 1122-1133. http://doi.org/10.1080/10942912.2019.1626418
MINAGRI., 2019. Serie de Estadísticas de Producción Agrícola. Perú. Disponible en: http://frenteweb.minagri.gob.pe/sisca/
Neela, S. and Fanta. S., 2019. Review on nutritional composition of orange?fleshed sweet potato and its role in management of vitamin A deficiency. Food Science & Nutrition, 7, pp. 1920-1945. http://doi.org/10.1002/fsn3.1063.
Ngailo, S., Shimelis, H., Sibiya, J., Mtunda, K. and Mashilo, J., 2019. Genotype-by environment interaction of newly-developed sweet potato genotypes for storage root yield, yield-related traits and resistance to sweet potato virus disease. Heliyon, 5, pp. e01448. http://doi.org/10.1016/j.heliyon.2019.e01448
Rizzolo, J. A., Woiciechowski, A. L., Magalhães, A. I., Zevallos, L. A. and Soccol, C. R., 2021. The potential of sweet potato biorefinery and development of alternative uses. SN Applied Sciences 3, pp. 347. http://doi.org/10.1007/s42452-021-04369-y
Salelign, K. and Duraisamy, R., 2021. Sugar and ethanol production potential of sweet potato (Ipomoea batatas) as an alternative energy feedstock: processing and physicochemical characterizations. Heliyon, 7, pp. e08402. http://doi.org/10.1016/j.heliyon.2021.e08402
Saman, W. R., I. Yuliasih, M. Sugiarto., 2019. Physicochemical Characteristics and Functional Properties of White Sweet Potato Starch. International Journal of Engineering and Management Research, 9, pp. 53-57. http://doi.org/10.31033/ijemr.9.3.7
SENHAMI. s/f. Estación meteorológica de Pacora, Lambayeque. https://www.senamhi.gob.pe/?p=pronostico-meteorologico
Sukhang, S., Choojit, S., Reungpeerakul, T. and Sangwichien, C., 2020. Bioethanol production from oil palm empty fruit bunch with SSF and SHF processes using Kluyveromyces marxianus yeast. Cellulose, 27, pp. 301–314. ,http://doi.org/10.1007/s10570-019-02778-2
Swain, M. R., Mishra, J. and Thatoi, H., 2013. Bioethanol Production from Sweet Potato (Ipomoea batatas L.) Flour using Co-Culture of Trichoderma sp. and Saccharomyces cerevisiae in Solid-State Fermentation. Brazilian Archives Of Biology And Technology, 56, pp. 171-179. http://doi.org/10.1590/S151689132013000200002
Tang, C., Lu, Y., Jiang, B., Chen, J., Mo, X., Yang, Y. and Wang, Z., 2022. Energy, Economic, and Environmental Assessment of Sweet Potato Production on Plantations of Various Sizes in South China. Agronomy, 12, pp. 1290. http://doi.org/10.3390/agronomy12061290
Tirado-Lara, R., Tirado-Malaver, R., Mayta-Huatuco, E. and Amoros-Briones, W., 2020. Identificación de clones de papa con pulpa pigmentada de alto rendimiento comercial y mejor calidad de fritura: Estabilidad y análisis multivariado de la interacción genotipo-ambiente. Scientia Agropecuaria, 11, pp. 323 – 334. http://doi.org/10.17268/sci.agropecu.2020.03.04
Tirado, M., Tirado, L. R. and Mendoza, C. J., 2018. Interacción genotipo x ambiente en rendimiento de papa (Solanum tuberosum L.) con pulpa pigmentada en Cutervo, Perú. Chilean Journal of Agricultural & Animal Sciences, 34, pp. 191–198. http://doi.org/10.4067/S0719-38902018005000502
Tirado, M., Mendoza-Sáenz, J. and Tirado, L. R., 2021. Análisis multivariado para caracterizar y tipificar fincas productoras de papa (Solanum tuberosum L.) en Cutervo, Cajamarca, Perú. Tropical and Subtropical Agroecosystems, 24, pp. #106.
https://www.revista.ccba.uady.mx/ojs/index.php/TSA/article/view/3744
Torquato, T. A., Rodrigues, I,. Pascual, I. D., Santana, W. and Silveira, M. A., 2017. Potential for sweet potato (Ipomoea batatas (L.) Lam.) single crosses to improve ethanol production. Revista Chapingo Serie Horticultura 23, pp. 59-74. http://doi.org/10.5154/r.rchsh.2016.05.013
Triwahyuni, E., 2020. Valorization of oil palm empty fruit bunch for bioethanol production through separate hydrolysis and fermentation (SHF) using immobilized cellulolytic enzymes. IOP Conf. Ser. Earth Environ. Science, 439, pp. 12–18. http://doi.org/10.1088/1755-1315/439/1/012018
Weber, C. T., Ranzan, L., Liesegang, L. M., Trierweiler, L. F. and Trierweiler, J. O., 2020. A circular economy model for ethanol and alcohol-based hand sanitizer from sweet potato waste in the context of COVID-19. Brazil Journal Operations & Production Management, 17, pp. 1–12. http://doi.org/10.14488/bjopm.2020.028
Zaccari, F., Cabrera, M.C. and Saadoun, A., 2019. Sweet Potato and Squash Storage. Encyclopedia of Food Security and Sustainability 2, pp. 464-472. http://doi.org/10.1016/B978-0-08-100596-5.22429-3
Zapana, J., M. Mamani, F. Escobar, and L. Zapana., 2018. Producción de raíz tuberosa en cultivo de "mauka" (Mirabilis expansa [Ruiz y Pavón] Standley) con aplicación de abonamiento orgánico y fertilización química en Puno - Perú. Revista de Investigaciones Altoandinas, 19, pp. 275-284. http://doi.org/10.18271/ria.2017.292
Zhang, L., Zhao, L., Bian, X., Guo, K. Zhou, L. and Wei, C., 2018. Characterization and comparative study of starches from seven purple sweet potatoes. Food Hydrocolloids, 80, pp. 168-176. http://doi.org/10.1016/j.foodhyd.2018.02.006
Zhu, F., Yang, X., Cai, Y., Bertoft, E. and Corke, H., 2011. Physicochemical properties of sweetpotato starch. Starch - Stärke, 63, pp. 249-259. http://doi.org/10.1002/star.201000134
Zhu, F. and Xie, Q., 2018. Rheological and thermal properties in relation to molecular structure of New Zealand sweetpotato starch. Food Hydrocoll, 83, pp. 165–172. http://doi.org/10.1016/j.foodhyd.2018.05.004
URN: http://www.revista.ccba.uady.mx/urn:ISSN:1870-0462-tsaes.v25i3.44095
DOI: http://dx.doi.org/10.56369/tsaes.4409
Copyright (c) 2022 Roberto Hugo Tirado Malaver
This work is licensed under a Creative Commons Attribution 4.0 International License.