IMPACT OF NPsZnO AND RHIZOSPHERIC MICROORGANISMS ON TOMATO GROWTH AND BIOMASS
Abstract
Keywords
Full Text:
PDFReferences
Abdallah, Y., Yang, M., Zhang, M., Masum, M.M., Ogunyemi, S.O., Hossain, A., An, Q., Yan, C. and Li, B., 2019. Plant growth promotion and suppression of bacterial leaf blight in rice by Paenibacillus polymyxa Sx3. Letters in Applied Microbiology, 68(5), pp. 423-429. https://doi.org/10.1111/lam.13117
Ali, S., Mehmood, A. and Khan, N., 2021. Uptake, translocation, and consequences of nanomaterials on plant growth and stress adaptation. Journal of Nanomaterials, vol. 2021, Article ID 6677616, 17 p., 2021. https://doi.org/10.1155/2021/6677616
Baker, S., Volova, T., Prudnikova, S. V., Satish, S. and Prasad, N., 2017. Nanoagroparticles emerging trends and future prospect in modern agriculture system. Environmental toxicology and pharmacology, 53, pp. 10-17. https://doi.org/10.1016/j.etap.2017.04.012
Cannavo, P., Hafdhi, H. and Michel, J.C., 2011. Impact of root growth on the physical properties of peat substrate under a constant water regimen. HortScience, 46(10), pp. 1394-1399. https://doi.org/10.21273/HORTSCI.46.10.1394
Cardoso, E.J., Nogueira, M.A. and Zangaro, W., 2017. Importance of mycorrhizae in tropical soils. In Diversity and Benefits of Microorganisms from the Tropics, pp. 245-267. Springer, Cham. https://doi.org/10.1007/978-3-319-55804-2_11
Chen, M., Yang, G., Sheng, Y., Li, P., Qiu, H., Zhou, X., Huang L. and Chao, Z., 2017. Glomus mosseae inoculation improves the root system architecture, photosynthetic efficiency and flavonoids accumulation of liquorice under nutrient stress. Frontiers in Plant Science, 8, pp. 931. https://doi.org/10.3389/fpls.2017.00931
Dal Cortivo, C., Barion, G., Visioli, G., Mattarozzi, M., Mosca, G. and Vamerali, T., 2017. Increased root growth and nitrogen accumulation in common wheat following PGPR inoculation: Assessment of plant-microbe interactions by ESEM. Agriculture, Ecosystems & Environment, 247, pp. 396-408. https://doi.org/10.1016/j.agee.2017.07.006
De la Rosa, G., López-Moreno, M.L., de Haro, D., Botez, C.E., Peralta-Videa, J.R. and Gardea-Torresdey, J.L., 2013. Effects of ZnO nanoparticles in alfalfa, tomato, and cucumber at the germination stage: root development and X-ray absorption spectroscopy studies. Pure and Applied Chemistry, 85(12), pp. 2161-2174. https://doi.org/10.1351/pac-con-12-09-05
Domingues, D.C.F., Cecato, U., Trento Biserra, T., Mamédio, D. and Galbeiro, S., 2020. Azospirillum spp. en gramíneas y forrajeras. Revisión. Revista Mexicana de Ciencias Pecuarias, 11(1), pp. 223-240. https://doi.org/10.22319/rmcp.v11i1.4951
Du, W., Sun, Y., Ji, R., Zhu, J., Wu, J. and Guo, H., 2011. TiO 2 and ZnO nanoparticles negatively affect wheat growth and soil enzyme activities in agricultural soil. Journal of Environmental Monitoring, 13(4), pp. 822-828. https://doi.org/10.1039/C0EM00611D
Esper Neto, M., Britt, D.W., Lara, L.M., Cartwright, A., dos Santos, R.F., Inoue, T.T. and Batista, M.A., 2020. Initial development of corn seedlings after seed priming with nanoscale synthetic zinc oxide. Agronomy, 10(2), pp. 307. https://doi.org/10.3390/agronomy10020307
Faizan, M., Faraz, A., Yusuf, M., Khan, S.T. and Hayat, S., 2018. Zinc oxide nanoparticle-mediated changes in photosynthetic efficiency and antioxidant system of tomato plants. Photosynthetica, 56 (2), pp. 678-686. https://doi.org/10.1007/s11099-017-0717-0
Fukami, J., Cerezini, P. and Hungria, M., 2018. Azospirillum: benefits that go far beyond biological nitrogen fixation. Amb Express, 8(1), pp. 1-12. https://doi.org/10.1186/s13568-018-0608-1
García-López, J.I., Zavala-García, F., Olivares-Sáenz, E., Lira-Saldívar, R.H., Díaz Barriga-Castro, E., Ruiz-Torres, N.A., Ramos-Cortez E., Vázquez-Alvarado R. and Niño-Medina, G., 2018. Zinc oxide nanoparticles boosts phenolic compounds and antioxidant activity of Capsicum annuum L. during germination. Agronomy, 8(10), pp. 215. https://doi.org/10.3390/agronomy8100215
Ghani, M.I., Saleem, S., Rather, S.A., Rehmani, M.S., Alamri, S., Rajput, V.D., Kalaji H.M., Sial T.A. and Liu, M., 2022. Foliar application of zinc oxide nanoparticles: An effective strategy to mitigate drought stress in cucumber seedling by modulating antioxidant defense system and osmolytes accumulation. Chemosphere, 289, 133202. https://doi.org/10.1016/j.chemosphere.2021.133202
Gunina, A., Smith, A.R., Godbold, D.L., Jones, D.L. and Kuzyakov, Y., 2017. Response of soil microbial community to afforestation with pure and mixed species. Plant and Soil, 412(1), pp. 357-368. https://doi.org/10.1007/ s11104-016-3073-0
Himmelbauer, M.L., 2004. Estimating length, average diameter and surface area of roots using two different image analyses systems. Plant and soil, 260 (1), pp. 111-120. https://doi.org/10.1023/B:PLSO.0000030171.28821.55
Hou, J., Wu, Y., Li, X., Wei, B., Li, S. and Wang, X., 2018. Toxic effects of different types of zinc oxide nanoparticles on algae, plants, invertebrates, vertebrates and microorganisms. Chemosphere, 193, pp. 852-860. https://doi.org/10.1016/j.chemosphere.2017.11.077
Islas, A.T., Guijarro, K.H., Eyherabide, M., Rozas, H.S., Echeverria, H.E. and Covacevich, F., 2016. Can soil properties and agricultural land use affect arbuscular mycorrhizal fungal communities indigenous from the Argentinean Pampas soils?. Applied Soil Ecology, 101, pp. 47-56. https://doi.org/10.1016/j.apsoil.2016.01.005
Kleinert, A., Benedito, V.A., Morcillo, R.J.L., Dames, J., Cornejo-Rivas, P., Zuniga-Feest, A., Delgado M. and Muñoz, G., 2018. Morphological and symbiotic root modifications for mineral acquisition from nutrient-poor soils. In Root Biology, pp. 85-142. Springer, Cham. https://doi.org/10.1007/978-3-319-75910-4_4
Laili, N.S., Radziah, O. and Zaharah, S.S., 2017. Isolation and characterization of plant growth promoting rhizobacteria (PGPR) and their effects on growth of strawberry (Fragaria ananassa Duch.). Bangladesh Journal of Botany, 46(1), pp. 277-282. http://www.bdbotsociety.org/.../04.pdf
Lin, D. and Xing, B., 2008. Root uptake and phytotoxicity of ZnO nanoparticles. Environmental Science & Technology, 42(15), pp. 5580-5585. https://doi.org/10.1021/es800422x
Madhaiyan, M., Poonguzhali, S., Kwon, S.W. and Sa, T.M., 2010. Bacillus methylotrophicus sp. nov., a methanol-utilizing, plant-growth-promoting bacterium isolated from rice rhizosphere soil. International Journal of Systematic and Evolutionary Microbiology, 60(10), pp. 2490-2495. https://doi.org/10.1099/ijs.0.015487-0
Mahajan, P., Dhoke, S.K. and Khanna, A.S., 2011. Effect of nano-ZnO particle suspension on growth of mung (Vigna radiata) and gram (Cicer arietinum) seedlings using plant agar method. Journal of Nanotechnology, 2011. https://doi.org/10.1155/2011/696535
Mousavi Kouhi, S.M., Lahouti, M., Ganjeali, A. and Entezari, M.H., 2015. Long-term exposure of rapeseed (Brassica napus L.) to ZnO nanoparticles: anatomical and ultrastructural responses. Environmental Science and Pollution Research, 22(14), pp. 10733-10743. https://doi.org/10.1007/s11356-015-4306-0
Oliveira, R.G., Noordwijk, M.V., Gaze, S.R., Brouwer, G., Bona, S., Mosca, G. and Hairiah, K., 2000. Auger sampling, ingrowth cores and pinboard methods. In Root Methods, pp. 175-210. Springer, Berlin, Heidelberg. https://doi.org/10.1007/ 978-3-662-04188-8_6
Palacio-Márquez, A., Ramírez-Estrada, C.A., Gutiérrez-Ruelas, N.J., Sánchez, E., Ojeda-Barrios, D.L., Chávez-Mendoza, C. and Sida-Arreola, J.P., 2021. Efficiency of foliar application of zinc oxide nanoparticles versus zinc nitrate complexed with chitosan on nitrogen assimilation, photosynthetic activity, and production of green beans (Phaseolus vulgaris L.). Scientia Horticulturae, 288, pp. 110297. https://doi.org/10.1016/j.scienta.2021.110297
Pokhrel, L.R., Silva, T., Dubey, B., El Badawy, A.M., Tolaymat, T.M. and Scheuerman, P.R., 2012. Rapid screening of aquatic toxicity of several metal-based nanoparticles using the MetPLATE™ bioassay. Science of the Total Environment, 426, pp. 414-422. https://doi.org/10.1016/j.scitotenv.2012.03.049
Pokluda, R., Ragasová, L., Jurica, M., Kalisz, A., Komorowska, M., Niemiec, M. and Sekara, A., 2021. Effects of growth promoting microorganisms on tomato seedlings growing in different media conditions. PloS One, 16(11), e0259380. https://doi.org/10.1371/journal.pone.0259380
Prasad, T.N.V.K.V., Sudhakar, P., Sreenivasulu, Y., Latha, P., Munaswamy, V., Reddy, K.R., Sreeprasad T.S., Sajanlal P.R. and Pradeep, T., 2012. Effect of nanoscale zinc oxide particles on the germination, growth and yield of peanut. Journal of Plant Nutrition, 35(6), pp. 905-927. https://doi.org/10.1080/01904167.2012.663443
Rajput, V., Minkina, T., Fedorenko, A., Sushkova, S., Mandzhieva, S., Lysenko, V., Duplii N., Fedorenko G., Dvadnenko K. and Ghazaryan, K., 2018. Toxicity of copper oxide nanoparticles on spring barley (Hordeum sativum distichum). Science of the Total Environment, 645, pp. 1103-1113. https://doi.org/10.1016/j.scitotenv.2018.07.211
Raliya, R., Franke, C., Chavalmane, S., Nair, R., Reed, N. and Biswas, P., 2016. Quantitative understanding of nanoparticle uptake in watermelon plants. Frontiers in Plant Science, 7, pp. 1288. https://doi.org/10.3389/fpls.2016.01288
Rao, S. and Shekhawat, G.S., 2014. Toxicity of ZnO engineered nanoparticles and evaluation of their effect on growth, metabolism and tissue specific accumulation in Brassica juncea. Journal of Environmental Chemical Engineering, 2(1), pp. 105-114. https://doi.org/10.1016/j.jece.2013.11.029
Raskar, S.V. and Laware, S.L., 2014. Effect of zinc oxide nanoparticles on cytology and seed germination in onion. International Journal Current Microbiology Applied Science, 3(2), pp. 467-473.
Ruttkay-Nedecky, B., Krystofova, O., Nejdl, L. and Adam, V., 2017. Nanoparticles based on essential metals and their phytotoxicity. Journal of nanobiotechnology, 15(1), pp. 1-19. https://doi.org/10.1186/s12951-017-0268-3
Secretaría de Agricultura y Desarrollo Rural, 2020. El jitomate, hortaliza mexicana de importancia mundial. Recuperado de: https://www.gob.mx/agricultura/ articulos/ el-jitomate-hortaliza-mexicana-de-importancia-mundial?idiom=es#:~:text=El%20jitomate%20es%20uno%20de,B1%2C%20B2%2C%20y%20C.
Sharma, D., Afzal, S. and Singh, N.K., 2021. Nanopriming with phytosynthesized zinc oxide nanoparticles for promoting germination and starch metabolism in rice seeds. Journal of Biotechnology, 336, pp. 64-75. https://doi.org/10.1016/j.jbiotec.2021.06.014
Sheoran, P., Grewal, S., Kumari, S. and Goel, S., 2021. Enhancement of growth and yield, leaching reduction in Triticum aestivum using biogenic synthesized zinc oxide nanofertilizer. Biocatalysis and Agricultural Biotechnology, 32, pp. 101938. https://doi.org/10.1016/j.bcab.2021. 101938
Singh, A., Singh, N.Á., Afzal, S., Singh, T. and Hussain, I., 2018. Zinc oxide nanoparticles: a review of their biological synthesis, antimicrobial activity, uptake, translocation and biotransformation in plants. Journal of Materials Science, 53(1), pp. 185-201. https://doi.org/10.1007/s10853-017-1544-1
Steiner, A.A., 1961. A universal method for preparing nutrient solutions of a certain desired composition. Plant and Soil, 15(2), pp. 134-154. https://doi.org/ 10.1007/BF01347224
Tarafdar, J. C., Raliya, R., Mahawar, H. and Rathore, I., 2014. Development of zinc nanofertilizer to enhance crop production in pearl millet (Pennisetum americanum). Agricultural Research, 3(3), pp. 257-262. https://doi.org/10.1007/s40003-014-0113-y
Van der Heijden, M.G., Martin, F.M., Selosse, M.A. and Sanders, I.R., 2015. Mycorrhizal ecology and evolution: the past, the present, and the future. New phytologist, 205(4), pp. 1406-1423. https://doi.org/10.1111/nph.13288
Van Noordwijk, M. and Floris, J., 1979. Loss of dry weight during washing and storage of root samples. Plant and Soil, pp. 239-243. http://www.jstor.org/stable/ 42934958
Vejan, P., Abdullah, R., Khadiran, T., Ismail, S. and Nasrulhaq Boyce, A., 2016. Role of Plant Growth Promoting Rhizobacteria in Agricultural Sustainability-A Review. Molecules (Basel, Switzerland), 21(5), pp. 573. https://doi.org/10.3390/molecules21050573
Wang, W.N., Tarafdar, J.C. and Biswas, P., 2013. Nanoparticle synthesis and delivery by an aerosol route for watermelon plant foliar uptake. Journal of nanoparticle research, 15(1), pp. 1-13. https://doi.org/10.1007/s11051-013-1417-8
Wang, X.P., Li, Q.Q., Pei, Z.M. and Wang, S.C., 2018. Effects of zinc oxide nanoparticles on the growth, photosynthetic traits, and antioxidative enzymes in tomato plants. Biologia Plantarum, 62(4), pp. 801-808. https://doi.org/ 10.1007/s10535-018-0813-4
Yusefi-Tanha, E., Fallah, S., Rostamnejadi, A. and Pokhrel, L.R., 2020. Zinc oxide nanoparticles (ZnONPs) as nanofertilizer: Improvement on seed yield and antioxidant defense system in soil grown soybean (Glycine max cv. Kowsar). BioRxiv. https://doi.org/ 10.1101/2020.04.13.0396
URN: http://www.revista.ccba.uady.mx/urn:ISSN:1870-0462-tsaes.v26i1.43320
DOI: http://dx.doi.org/10.56369/tsaes.4332
Copyright (c) 2022 Alonso Méndez-López, Guillermo Vargas-Martínez, Rebeca Betancourt-Galindo, Antonio Juárez-Maldonado, Miriam Sánchez-Vega, Alberto Sandoval-Rangel
This work is licensed under a Creative Commons Attribution 4.0 International License.