Guillermo Vargas-Martínez, Rebeca Betancourt-Galindo, Antonio Juárez-Maldonado, Miriam Sánchez-Vega, Alberto Sandoval-Rangel, Alonso Méndez-López


Background. Sustainable agriculture promotes the use of mineral and biological origin inputs that act as plant growth stimulants, such as zinc oxide nanoparticles (NPsZnO) and rhizospheric microorganisms, which have positively intervened in the physiological response of plants, due to their unique properties. Objective. To evaluate the effects of NPsZnO applied via foliar and drench, and of rhizospheric microorganisms on the vegetative growth and biomass of tomato plants. Methodology. The doses of nanoparticles were applied at: 0, 10 and 30 mg·L-1 and in microorganisms 0 and 10 spores·mL-1. The variables evaluated were: plant height, stem diameter, number of leaves, leaf area, root length and volume, and total biomass. Results. It was observed that plant height, stem diameter and number of leaves were higher with the interaction of 10 mg·L-1 of NPsZnO and the microbial consortium. The root length decreased 25.88% with the foliar application of 30 mg·L-1 NPsZnO. Root volume decreased 18.49% with the drench application of 30 mg·L-1 NPsZnO and decreased 29.55% with the foliar application of 10 mg·L-1 NPsZnO. The total biomass increased 15.65% and 28.81%, respectively with the foliar application of 30 mgL-1 of nanoparticles and when 30 mg·L-1 of NPsZnO was applied in interaction with the microbial consortium. Implications. Although root length and volume had a negative effect with the application of NPsZnO, plant height, stem diameter, number of leaves and total biomass structural components for fruit production in tomato plants were promoted by the application of NPsZnO in interaction with rhizospheric microorganisms by generating synergism. Conclusion. The dose of the nanoparticles, the application method and the microorganisms in the substrate showed positive synergism in the growth and biomass of tomato plants.


Solanum lycopersicon L; Glomus intraradices; Azospirillum brasilense; Nanoparticles

Full Text:



Abdallah, Y., Yang, M., Zhang, M., Masum, M.M., Ogunyemi, S.O., Hossain, A., An, Q., Yan, C. and Li, B., 2019. Plant growth promotion and suppression of bacterial leaf blight in rice by Paenibacillus polymyxa Sx3. Letters in Applied Microbiology, 68(5), pp. 423-429.

Ali, S., Mehmood, A. and Khan, N., 2021. Uptake, translocation, and consequences of nanomaterials on plant growth and stress adaptation. Journal of Nanomaterials, vol. 2021, Article ID 6677616, 17 p., 2021.

Baker, S., Volova, T., Prudnikova, S. V., Satish, S. and Prasad, N., 2017. Nanoagroparticles emerging trends and future prospect in modern agriculture system. Environmental toxicology and pharmacology, 53, pp. 10-17.

Cannavo, P., Hafdhi, H. and Michel, J.C., 2011. Impact of root growth on the physical properties of peat substrate under a constant water regimen. HortScience, 46(10), pp. 1394-1399.

Cardoso, E.J., Nogueira, M.A. and Zangaro, W., 2017. Importance of mycorrhizae in tropical soils. In Diversity and Benefits of Microorganisms from the Tropics, pp. 245-267. Springer, Cham.

Chen, M., Yang, G., Sheng, Y., Li, P., Qiu, H., Zhou, X., Huang L. and Chao, Z., 2017. Glomus mosseae inoculation improves the root system architecture, photosynthetic efficiency and flavonoids accumulation of liquorice under nutrient stress. Frontiers in Plant Science, 8, pp. 931.

Dal Cortivo, C., Barion, G., Visioli, G., Mattarozzi, M., Mosca, G. and Vamerali, T., 2017. Increased root growth and nitrogen accumulation in common wheat following PGPR inoculation: Assessment of plant-microbe interactions by ESEM. Agriculture, Ecosystems & Environment, 247, pp. 396-408.

De la Rosa, G., López-Moreno, M.L., de Haro, D., Botez, C.E., Peralta-Videa, J.R. and Gardea-Torresdey, J.L., 2013. Effects of ZnO nanoparticles in alfalfa, tomato, and cucumber at the germination stage: root development and X-ray absorption spectroscopy studies. Pure and Applied Chemistry, 85(12), pp. 2161-2174.

Domingues, D.C.F., Cecato, U., Trento Biserra, T., Mamédio, D. and Galbeiro, S., 2020. Azospirillum spp. en gramíneas y forrajeras. Revisión. Revista Mexicana de Ciencias Pecuarias, 11(1), pp. 223-240.

Du, W., Sun, Y., Ji, R., Zhu, J., Wu, J. and Guo, H., 2011. TiO 2 and ZnO nanoparticles negatively affect wheat growth and soil enzyme activities in agricultural soil. Journal of Environmental Monitoring, 13(4), pp. 822-828.

Esper Neto, M., Britt, D.W., Lara, L.M., Cartwright, A., dos Santos, R.F., Inoue, T.T. and Batista, M.A., 2020. Initial development of corn seedlings after seed priming with nanoscale synthetic zinc oxide. Agronomy, 10(2), pp. 307.

Faizan, M., Faraz, A., Yusuf, M., Khan, S.T. and Hayat, S., 2018. Zinc oxide nanoparticle-mediated changes in photosynthetic efficiency and antioxidant system of tomato plants. Photosynthetica, 56 (2), pp. 678-686.

Fukami, J., Cerezini, P. and Hungria, M., 2018. Azospirillum: benefits that go far beyond biological nitrogen fixation. Amb Express, 8(1), pp. 1-12.

García-López, J.I., Zavala-García, F., Olivares-Sáenz, E., Lira-Saldívar, R.H., Díaz Barriga-Castro, E., Ruiz-Torres, N.A., Ramos-Cortez E., Vázquez-Alvarado R. and Niño-Medina, G., 2018. Zinc oxide nanoparticles boosts phenolic compounds and antioxidant activity of Capsicum annuum L. during germination. Agronomy, 8(10), pp. 215.

Ghani, M.I., Saleem, S., Rather, S.A., Rehmani, M.S., Alamri, S., Rajput, V.D., Kalaji H.M., Sial T.A. and Liu, M., 2022. Foliar application of zinc oxide nanoparticles: An effective strategy to mitigate drought stress in cucumber seedling by modulating antioxidant defense system and osmolytes accumulation. Chemosphere, 289, 133202.

Gunina, A., Smith, A.R., Godbold, D.L., Jones, D.L. and Kuzyakov, Y., 2017. Response of soil microbial community to afforestation with pure and mixed species. Plant and Soil, 412(1), pp. 357-368. s11104-016-3073-0

Himmelbauer, M.L., 2004. Estimating length, average diameter and surface area of roots using two different image analyses systems. Plant and soil, 260 (1), pp. 111-120.

Hou, J., Wu, Y., Li, X., Wei, B., Li, S. and Wang, X., 2018. Toxic effects of different types of zinc oxide nanoparticles on algae, plants, invertebrates, vertebrates and microorganisms. Chemosphere, 193, pp. 852-860.

Islas, A.T., Guijarro, K.H., Eyherabide, M., Rozas, H.S., Echeverria, H.E. and Covacevich, F., 2016. Can soil properties and agricultural land use affect arbuscular mycorrhizal fungal communities indigenous from the Argentinean Pampas soils?. Applied Soil Ecology, 101, pp. 47-56.

Kleinert, A., Benedito, V.A., Morcillo, R.J.L., Dames, J., Cornejo-Rivas, P., Zuniga-Feest, A., Delgado M. and Muñoz, G., 2018. Morphological and symbiotic root modifications for mineral acquisition from nutrient-poor soils. In Root Biology, pp. 85-142. Springer, Cham.

Laili, N.S., Radziah, O. and Zaharah, S.S., 2017. Isolation and characterization of plant growth promoting rhizobacteria (PGPR) and their effects on growth of strawberry (Fragaria ananassa Duch.). Bangladesh Journal of Botany, 46(1), pp. 277-282.

Lin, D. and Xing, B., 2008. Root uptake and phytotoxicity of ZnO nanoparticles. Environmental Science & Technology, 42(15), pp. 5580-5585.

Madhaiyan, M., Poonguzhali, S., Kwon, S.W. and Sa, T.M., 2010. Bacillus methylotrophicus sp. nov., a methanol-utilizing, plant-growth-promoting bacterium isolated from rice rhizosphere soil. International Journal of Systematic and Evolutionary Microbiology, 60(10), pp. 2490-2495.

Mahajan, P., Dhoke, S.K. and Khanna, A.S., 2011. Effect of nano-ZnO particle suspension on growth of mung (Vigna radiata) and gram (Cicer arietinum) seedlings using plant agar method. Journal of Nanotechnology, 2011.

Mousavi Kouhi, S.M., Lahouti, M., Ganjeali, A. and Entezari, M.H., 2015. Long-term exposure of rapeseed (Brassica napus L.) to ZnO nanoparticles: anatomical and ultrastructural responses. Environmental Science and Pollution Research, 22(14), pp. 10733-10743.

Oliveira, R.G., Noordwijk, M.V., Gaze, S.R., Brouwer, G., Bona, S., Mosca, G. and Hairiah, K., 2000. Auger sampling, ingrowth cores and pinboard methods. In Root Methods, pp. 175-210. Springer, Berlin, Heidelberg. 978-3-662-04188-8_6

Palacio-Márquez, A., Ramírez-Estrada, C.A., Gutiérrez-Ruelas, N.J., Sánchez, E., Ojeda-Barrios, D.L., Chávez-Mendoza, C. and Sida-Arreola, J.P., 2021. Efficiency of foliar application of zinc oxide nanoparticles versus zinc nitrate complexed with chitosan on nitrogen assimilation, photosynthetic activity, and production of green beans (Phaseolus vulgaris L.). Scientia Horticulturae, 288, pp. 110297.

Pokhrel, L.R., Silva, T., Dubey, B., El Badawy, A.M., Tolaymat, T.M. and Scheuerman, P.R., 2012. Rapid screening of aquatic toxicity of several metal-based nanoparticles using the MetPLATE™ bioassay. Science of the Total Environment, 426, pp. 414-422.

Pokluda, R., Ragasová, L., Jurica, M., Kalisz, A., Komorowska, M., Niemiec, M. and Sekara, A., 2021. Effects of growth promoting microorganisms on tomato seedlings growing in different media conditions. PloS One, 16(11), e0259380.

Prasad, T.N.V.K.V., Sudhakar, P., Sreenivasulu, Y., Latha, P., Munaswamy, V., Reddy, K.R., Sreeprasad T.S., Sajanlal P.R. and Pradeep, T., 2012. Effect of nanoscale zinc oxide particles on the germination, growth and yield of peanut. Journal of Plant Nutrition, 35(6), pp. 905-927.

Rajput, V., Minkina, T., Fedorenko, A., Sushkova, S., Mandzhieva, S., Lysenko, V., Duplii N., Fedorenko G., Dvadnenko K. and Ghazaryan, K., 2018. Toxicity of copper oxide nanoparticles on spring barley (Hordeum sativum distichum). Science of the Total Environment, 645, pp. 1103-1113.

Raliya, R., Franke, C., Chavalmane, S., Nair, R., Reed, N. and Biswas, P., 2016. Quantitative understanding of nanoparticle uptake in watermelon plants. Frontiers in Plant Science, 7, pp. 1288.

Rao, S. and Shekhawat, G.S., 2014. Toxicity of ZnO engineered nanoparticles and evaluation of their effect on growth, metabolism and tissue specific accumulation in Brassica juncea. Journal of Environmental Chemical Engineering, 2(1), pp. 105-114.

Raskar, S.V. and Laware, S.L., 2014. Effect of zinc oxide nanoparticles on cytology and seed germination in onion. International Journal Current Microbiology Applied Science, 3(2), pp. 467-473.

Ruttkay-Nedecky, B., Krystofova, O., Nejdl, L. and Adam, V., 2017. Nanoparticles based on essential metals and their phytotoxicity. Journal of nanobiotechnology, 15(1), pp. 1-19.

Secretaría de Agricultura y Desarrollo Rural, 2020. El jitomate, hortaliza mexicana de importancia mundial. Recuperado de: articulos/ el-jitomate-hortaliza-mexicana-de-importancia-mundial?idiom=es#:~:text=El%20jitomate%20es%20uno%20de,B1%2C%20B2%2C%20y%20C.

Sharma, D., Afzal, S. and Singh, N.K., 2021. Nanopriming with phytosynthesized zinc oxide nanoparticles for promoting germination and starch metabolism in rice seeds. Journal of Biotechnology, 336, pp. 64-75.

Sheoran, P., Grewal, S., Kumari, S. and Goel, S., 2021. Enhancement of growth and yield, leaching reduction in Triticum aestivum using biogenic synthesized zinc oxide nanofertilizer. Biocatalysis and Agricultural Biotechnology, 32, pp. 101938. 101938

Singh, A., Singh, N.Á., Afzal, S., Singh, T. and Hussain, I., 2018. Zinc oxide nanoparticles: a review of their biological synthesis, antimicrobial activity, uptake, translocation and biotransformation in plants. Journal of Materials Science, 53(1), pp. 185-201.

Steiner, A.A., 1961. A universal method for preparing nutrient solutions of a certain desired composition. Plant and Soil, 15(2), pp. 134-154. 10.1007/BF01347224

Tarafdar, J. C., Raliya, R., Mahawar, H. and Rathore, I., 2014. Development of zinc nanofertilizer to enhance crop production in pearl millet (Pennisetum americanum). Agricultural Research, 3(3), pp. 257-262.

Van der Heijden, M.G., Martin, F.M., Selosse, M.A. and Sanders, I.R., 2015. Mycorrhizal ecology and evolution: the past, the present, and the future. New phytologist, 205(4), pp. 1406-1423.

Van Noordwijk, M. and Floris, J., 1979. Loss of dry weight during washing and storage of root samples. Plant and Soil, pp. 239-243. 42934958

Vejan, P., Abdullah, R., Khadiran, T., Ismail, S. and Nasrulhaq Boyce, A., 2016. Role of Plant Growth Promoting Rhizobacteria in Agricultural Sustainability-A Review. Molecules (Basel, Switzerland), 21(5), pp. 573.

Wang, W.N., Tarafdar, J.C. and Biswas, P., 2013. Nanoparticle synthesis and delivery by an aerosol route for watermelon plant foliar uptake. Journal of nanoparticle research, 15(1), pp. 1-13.

Wang, X.P., Li, Q.Q., Pei, Z.M. and Wang, S.C., 2018. Effects of zinc oxide nanoparticles on the growth, photosynthetic traits, and antioxidative enzymes in tomato plants. Biologia Plantarum, 62(4), pp. 801-808. 10.1007/s10535-018-0813-4

Yusefi-Tanha, E., Fallah, S., Rostamnejadi, A. and Pokhrel, L.R., 2020. Zinc oxide nanoparticles (ZnONPs) as nanofertilizer: Improvement on seed yield and antioxidant defense system in soil grown soybean (Glycine max cv. Kowsar). BioRxiv. 10.1101/2020.04.13.0396



Copyright (c) 2022 Alonso Méndez-López, Guillermo Vargas-Martínez, Rebeca Betancourt-Galindo, Antonio Juárez-Maldonado, Miriam Sánchez-Vega, Alberto Sandoval-Rangel

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.