Marcela Ríos-Sandoval, Gabriel Rincón-Enríquez, Martha Angélica Bautista-Cruz, Evangelina Esmeralda Quiñones Aguilar


Background: The majority of terrestrial plants have evolved in symbiosis with beneficial microorganisms, which help them acquire minerals that are scarce in soil, such as phosphorus and in some cases nitrogen. Thus, the development and use of biofertilizers based on microorganisms is important for partial or total replacement of chemical fertilizers. The use of arbuscular mycorrhizal fungi (AMF) and Azospirillum brasilense helps to boost Mexican lime (Citrus aurantifolia) plant growth, making them more vigorous and productive. Objective: To evaluate the effect of beneficial microorganisms in Mexican lime plant growth in a greenhouse. Methodology: An experiment with Mexican lime was established under greenhouse conditions and a completely randomized bifactorial design: (A) beneficial microorganism with four levels: consortium HMA Cerro del Metate; Rhizophagus intraradices (Ri); Azospirillum brasilense (Ab); and without microbial inoculum (WI); (B) chemical fertilization N-P-K (nitrogen-phosphorus-potassium) with four levels: high (180-180-180 kg ha-1); intermediate (90-90-90 kg ha-1); low (45-45-45 kg ha-1) and without fertilization. In total, 16 treatments with seven replicates were performed; plant growth and microbiological response variables were evaluated with an analysis of variance (ANOVA) and Tukey’s multiple comparison of means tests. Results: Significant effects (Tukey, P≤0.05) of the mycorrhizal consortium Cerro del Metate were found, followed by R. intraradices and lastly A. brasilense, which proved that these microorganisms promoted plant growth. Mycorrhization significantly increased (P≤0.05) plant growth rate, as well as dry biomass, observing a mycorrhizal colonization from 16 to 30%. Fertilization only showed a significant interaction (Tukey, P≤0.05) with A. brasilense. Implications: The use of native microorganisms and preferably consortia may have better adaptability than commercial ones, which can be explained in part by the effects found in this study. Conclusion: Mexican lime plants showed a significantly positive (P≤0.05) response to inoculation with AMF, showing greater plant growth than the other treatments.


beneficial microorganisms; growth promoting bacteria; chemical fertilization; rhizosphere.

Full Text:



Abdel-Salam, E., Alatar, A. and El-Sheikh, M.E., 2017. Inoculation with arbuscular mycorrhizal fungi alleviates harmful effects of drought stress on damask rose. Saudi Journal of Biological Sciences, 25, pp. 1772–1780.

Aguado-Santacruz, G.A., Rascón-Cruz, Q. and Luna-Bulbarela, A., 2012. Impacto económico y ambiental del empleo de fertilizantes químicos. In: G.A. Aguado-Santacruz, Introducción al uso y manejo de los biofertilizantes en la agricultura, ed. INIFAP/SAGARPA, México, pp. 1–22.

Alam, S. and Seth, R.K., 2014. Comparative study on effect of chemical and bio-fertilizer on growth, development and yield production of paddy crop (Oryza sativa). International Journal of Science and Research, 3(9), pp. 411–414.

Back, M.M., Altmann, T. and de Souza, P.V., 2016. Influence of arbuscular mycorrhizal fungi on the vegetative development of citrus rootstocks. Pesquisa Agropecuária Tropical, 46(4), pp. 407–412.

Barrer, S., 2009. El uso de hongos micorrízicos arbusculares como una alternativa para la agricultura. Facultad de Ciencias Agropecuarias, 7(1), pp. 123–132.

Begum, N., Qin, C., Ahanger, M.A., Raza, S., Khan, M.I., Ashraf, M., Ahmed, N. and Zhang, L., 2019. Role of arbuscular mycorrhizal fungi in plant growth regulation: implications in abiotic stress tolerance. Frontiers in Plant Science, 10:1068.

Caballero-Mellado, J., Onofre-Lemus, J., Wong-Villarreal, A., Castro-González, R., Estrada-de los Santos, P., Rodríguez-Salazar, J., Suárez, R., Iturriaga, G. and Martínez-Aguilar, L., 2009. Uso de Azospirillum en México como biofertilizante y potencial de nuevas especies bacterianas como biofertilizantes, agentes de biorremediación y biocontrol de fitopatógenos. VII Simposio Internacional de Producción de Alcoholes y Levaduras. XIII Congreso Nacional de Biotecnología y Bioingeniería.

Castillo, C., Sotomayor, L., Ortiz, C., Leonelli, G., Borie, F. and Rubio, R., 2009. Effect of arbuscular mycorrhizal fungi on an ecological crop of chili peppers (Capsicum annuum L.). Chilean Journal of Agricultural Reserch, 69(1), pp. 79–87.

Chen, M., Arato, M., Borghi, L., Nouri, E. and Reinhardt, D., 2018. Beneficial services of arbuscular mycorrhizal fungi – from ecology to application. Frontiers in Plant Science, 9:1270.

García, F., Muñoz, H., Carreño, C. and Mendoza, G., 2010. Caracterización de cepas nativas de Azospirillum spp. y su efecto en el desarrollo de Oryza sativa L. “arroz” en Lambayeque. Scientia Agropecuaria, 1, pp. 107–116.

García-Olivares, J.G., Mendoza-Herrera, A. and Mayek-Pérez, N., 2012. Efecto de Azospirillum brasilense en el rendimiento del maíz en el norte de Tamaulipas, México. Universidad y Ciencia, 28(1), pp. 79–84.

Gerdemann, J.W. and Nicolson, T.H., 1963. Spores of micorrhizal endogone species extracted from soil by wet sieving and decanting. Transactions of the British Mycological Society, 46, pp. 235–244.

González, R. and Silva, R., 2003. Programa estratégico de investigación y transferencia de tecnología en el estado de colima, caracterización de las cadenas prioritarias e identificación de las demandas tecnológicas: cadena de limón mexicano (Citrus aurantifolia Swingle), Universidad de Colima y Fundación Produce Colima, A. C., Colima.

Guigón, C. and González, P.A., 2004. Selección de cepas nativas de Trichoderma spp. con actividad antagónica sobre Phytophthora capsici Leonian y promotoras de crecimiento en el cultivo de chile (Capsicum annuum L.). Revista Mexicana de Fitopatología, 22(1), pp. 117–124.

ISTA., 2016. Reglas Internacionales para el análisis de las semillas 2016. The International Seed Testing Association (ISTA) Zürichstr. 50, CH-8303 Bassersdorf, Suiza. 192 p.

Keymer A., Pimprikar P., Wewer V., Huber C., Brands M., Bucerius S.L., Delaux P.M., Klingl V., von Roepenack-Lahaye E., Wang T.L., Eisenreich W., Dörmann P., Parniske M. and Gutjahr C., 2017. Lipid transfer from plants to arbuscular mycorrhiza fungi. eLife 6:e29107.

Linderman, R.G. and Davis, E.A., 2004. Varied response of marigold (Tagetes spp.) genotypes to inoculation with different arbuscular mycorrhizal fungi. Scientia Horticulturae, 99, pp. 67–78.

Madigan, M.T., Martinko, J.M., Dunlap, P.V. and Clark, D.P., 2009. Brock: biología de los microorganismos, Pearson Educación, S.A., España.

Martínez, J., Virgen, J., Peña, M. and Romero, A., 2010. Índice de velocidad de emergencia en líneas de maíz. Revista Mexicana de Ciencias Agrícolas, 1(3), pp. 289–304.

Mcgonigle, T.M., Miller, T.M., Evans, D., Fairchild, G. and Swan, J., 1990. A new method wich gives and objective measure of colonization of roots by vesicular-arbuscular mycorrhizal fungi. New Phytologist, 115, pp. 495–501.

Mehnaz, S., 2015. Azospirillum: a biofertilizer for every crop. In: Arora, N. K. ed. Plant microbes symbiosis: Applied facets. Springer, New Delhi. pp. 297–314.

Molla, A.H., Shamsuddin, Z.H. and Saud, H.M., 2001. Mechanism of root growth and promotion of nodulation in vegetable soybean by Azospirillum brasilense. Communications in Soil Science and Plant Analysis, 32, pp. 2177–2187.

Phillips, J.M. and Hayman, D.S., 1970. Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Transactions of the British Mycological Society, 55, pp. 158–161.

Rodríguez, E., 1982. Improved médium for isolation of Azospirillum spp. Applied and Environmental Microbiology, 44, pp. 990–991.

Rodríguez, R.J., Henson, J., Van Volkenburgh, E., Hoy, M., Wright, L., Beckwith, F., Kim, Y. and Redman, R.S., 2008. Stress tolerance in plants via habitat-adapted simbiosis. ISME Journal, 2, pp. 404–416.

Saikia, S.P., Jain, V., Khetarpal, S. and Aravind, S., 2007. Dinitrogen fixation activity of Azospirillum brasilense in maize (Zea mays). Current Science, 93(9), pp. 1296–1300.

Schüßler, A., Schwarzott, D. and Walker, C., 2001. A new fungal phylum, the Glomeromycota: phylogeny and evolution. Mycological Reserch, 105(12), pp. 1413–1421.

Servicio de Información Agroalimentaria y Pesquera, México. 2021 (accessed 27.07.2021).

Sharma, D., Kapoor, R. and Bhatnagar, A.K., 2009. Differential growth response of Curculigo orchioides to native arbuscular mycorrhizal fungal (AMF) communities varying in number and fungal components. European Journal of Soil Biology, 45, pp. 328–333.

Smith, S.E. and Read, D.J., 2008. Mycorrhizal symbiosis. Elsevier, E.U.A.

Statgraphics., 2005. StatGraphics Centurion: ver. XV (User Manual). USA: Stat-Point, Inc.

Timmer, L.W. and Leyden, R.F., 1980. The relationship of mycorrhizal infection to phosphorus-induced copper deficiency in sour orange seedlings. New Phytologist, 85(1), pp. 15–23.

Trejo, D., Ferrera-Cerrato, R., García, R., Varela, L., Lara, L. and Alarcón, A., 2011. Efectividad de siete consorcios nativos de hongos micorrízicos arbusculares en plantas de café en condiciones de invernadero y campo. Revista Chilena de Historia Natural, 84, pp. 23–31.

Trinidad-Cruz, J.R., Quiñones-Aguilar, E.E., Hernández-Cuevas, L.V., López-Pérez, L. and Rincón-Enríquez, G., 2017. Hongos micorrícicos arbusculares asociados a la rizósfera de Agave cupreata Trel. & Berger en regiones mezcaleras del estado de Michoacán, México. Scientia Fungorum, 45, pp. 13-25.

Walker, C., 1997. Spore extraction by centrifugation-sugar flotation, Internal Document, Biological Research and Imaging Laboratory, New Milton, Hampshire: UK.

Watanarojanaporn, N., Boonkerd, N., Wongkaew, S., Prommanop, P. and Teaumroong, N., 2011. Selection of arbuscular mycorrhizal fungi for citrus growth promotion and Phytophthora suppression. Scientia Horticulturae, 128, pp. 423–433.

Zeffa, D.M., Perini, L.J., Silva, M.B., de Sousa, N.V., Scapim, C.A., Oliveira, A.L.M., Junior, A.T. and Gonçalves, L.S., 2019. Azospirillum brasilense promotes increases in growth and nitrogen use efficiency of maize genotypes. PLoS ONE, 14(4), e0215332.



Copyright (c) 2022 Evangelina Esmeralda Quiñones Aguilar, Marcela Ríos-Sandoval, Gabriel Rincón-Enríquez, Martha Angélica Bautista-Cruz

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.