EVALUATION OF COMBINED PROCESSES: CHITIN PURIFICATION FROM SHRIMP (Penaeus sp) AND GRASSHOPPER (Sphenarium purpurascens) EXOSKELETONS

Adolfo Amador Mendoza, José Manuel Juárez Barrientos, Hipólito Hernández Hernández, Laura Patricia Ramírez Coutiño, Sergio Huerta Ochoa, Erasmo Herman Lara, Jesús Rodríguez Miranda

Abstract


Background. Chitin is found in high concentration in insects, this being a new source of exploitation, due to the similarity in the content of chitin in exoskeletons of crustaceans compared to insects, especially those considered pests. Objective. Evaluate and compare the biological process of solid medium fermentation (SMF) combined with three treatments: ultrasonication, chemical and enzymatic hydrolysis in the purification of chitin from shrimp (Penaeus sp) and grasshopper (Sphenarium purpurascens) exoskeletons. Methodology. It consisted of the implementation of a pretreatment by fermentation in a solid medium (SMF) with chitinous samples (shrimp and grasshopper) combined with ultrasonication (20 kHz, 750 W, 120 min, 30 °C, 1/20 p/v), hydrolysis chemical (0.4 M NaOH, 0.6 N HCl, 38% NaClO, 1/15 p/v, 25 °C, 4 h) and enzymatic (Alcalase® 2.4L, 1:2 E:S, pH 7.5, 70 °C, 150 rpm, 300 min). Results. The combined treatments of SMF-ultrasonication, SMF-chemical hydrolysis, and SMF-enzymatic hydrolysis showed a higher percentage of deproteinization (84.82, 94.67, and 80.45%) and demineralization (82.12, 95.58, and 52%) with shrimp exoskeletons compared to shrimp exoskeletons grasshopper percentages (76.38, 92.04 and 78.71%) and (79.39, 95.37 and 51.79%) respectively. Implications. The chemical treatment generated greater protein and mineral removal compared to the other treatments, reaching yields of 54.45% in shrimp and 51.88% in grasshoppers. Conclusion. Ultrasonic waves extracted chitin in a shorter time (2h) with yields of 74.43% in shrimp and 78.02% in grasshoppers, reducing the amount of water.

Keywords


Shrimp and grasshopper exoskeletons; combined processes; deproteinization; demineralization and chitin.

Full Text:

PDF

References


Amador Mendoza, A., Huerta Ochoa, S., Herman Lara, E., Membrillo Venegas, I., A. Aguirre Cruz, A., M.A. Vivar Vera, M. A. and Ramírez Coutiño, L., 2016. Efecto de la purificación química, biológica y física en la recuperación de quitina de exoesqueletos de camarón (Penaeus sp) y chapulín (Sphenarium purpurascens). Revista Mexicana de Ingeniería Química, 15, pp. 711-725. https://doi.org/10.24275/rmiq/bio1020.

AOAC., 2012. Association of Official Analytical Chemist 2005. Methods of Analysis (19th ed.). AOAC 33, 749, 2012. Moisture in Flour, AOAC 7,132, 2012. Ash of Flour, AOAC, 37,924 Acidity (Titrable) of Fruit Product, AOAC 43, 689, 2012. Microchemical Determination of Nitrogen. Washington, D.C. AOAC

Bajaj, M., Winter, J. and Gallert, C., 2011. Effect of deproteination and deacetylation conditions on viscosity of chitin and chitosan extracted from crangon shrimp waste. Biochemical Engineering Journal, 56, pp. 51–62. https://doi.org/10.1016/j.bej.2011.05.006.

Barreto, C., Signini, R. and Campana, F., 2001. On the sonication of chitin: effects on its structure and morphology and influence on its deacetylation. Polymer Bulletin. 47, pp. 183–190. https://doi.org/10.1007/s002890170010.

Castro, R., Guerrero I. and Bórquez, R., 2018. Chitin extraction from Allopetrolisthes punctatus crab using lactic fermentation. Biotechnology Reports. 20, pp. 24-56. https://doi.org/10.1016/j.btre.2018.e00287.

Chávez Magdaleno, M. E., Luque Alcaraz, A. G., Gutiérrez Martínez, P., Cortez Rocha, M. O., Burgos Hernández, A., Lizardi Mendoza, J. and Plascencia Jatomea, M., 2018. Effect of chitosan-pepper tree (Schinus molle) essential oil biocomposites on the growth kinetics, viability and membrane integrity of Colletotrichum gloeosporioides. Revista Mexicana de Ingeniería Química. 17, pp. 29-45. https://doi.org/10.24275/uam/izt/dcbi/revmexingquim/2018v17n1/Chávez.

Cira, L., Huerta, S. and Shirai, K., 2002. Fermentación láctica de cabezas de camarón (Penaeus sp) en un reactor de fermentación sólida. Revista mexicana de ingeniería química. 1, pp. 45-48. https://www.redalyc.org/articulo.oa?id=62010206.

Cisneros Pérez, I., Curbelo Hernández, C., Andrade Díaz, C., and Giler Molina, J. M., 2019. Evaluación de la extracción enzimática de quitina a partir del exoesqueleto de camarón. Centro azúcar. 46(1), pp. 51-63. http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S2223-48612019000100051&lng=es&nrm=iso.

Comisión Nacional de Acuicultura y Pesca. 2013. Anuario estadístico de Acuicultura y Pesca., 2013. México. 213, pp. http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S2223-48612019000100051&lng=es&tlng=es

Elieh Ali Komi, D. and Hamblin, M. R., 2016. Chitin and chitosan: production and application of versatile biomedical nanomaterials. International Journal of Advanced Research. 4, pp.24-11. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5094803/pdf/nihms774320.pdf.

Focher, B., Naggi, A., Torri, G., Cosani, A. and Terbojevich, M. 1992. Chitosans from Euphausia superba. 2: Characterization of solid state structure. Carbohydrate Polymers. 18, pp. 43-49. https://doi.org/10.1016/0144-8617(92)90186-T.

Francisco, F. C, Simora. R. M. C. and Nuñal, S. N., 2015a. Deproteination and demineralization of shrimp waste using lactic acid bacteria for the production of crude chitin and chitosan. International Journal of the Bioflux Society. 8, pp. 107–115. http://www.bioflux.com.ro/docs/2015.107-115.pdf

Gildberg, A. and Stenberg, E., 2001. A new process for advanced utilization of shrimp waste. Process Biochemistry. 36, pp. 809-812. https://doi.org/10.1016/S0032-9592(00)00278-8.

Islem, Y. and Marguerite, R., 2015. Chitin and chitosan preparation from marine sources. Structure, properties and applications. Marine Drugs. 13, pp.1133-1174. https://doi.org/10.3390/md13031133.

Kasaai, M.R., Arul J. and Charlet, C., 2000. Intrinsic viscosity molecular weight relationship for chitosan. Journal of Polymer Science. 38, pp. 2591–2598. https://doi.org/10.1002/1099-0488(20001001)38:19<2591::AID-POLB110>3.0.CO;2-6.

Kaya, M., Lelesius, E., Nagrockait´e, R., Sargin, I., Arslan, G., Mol, A., Baran, T., Can, E. and Bitim, B., 2015. Diferentiations of Chitin Content and Surface Morphologies of Chitins Extracted from Male and Female Grasshopper Species. PLoS ONE 10, e0115531. https://doi.org/10.1371/journal.pone.0115531.

King, C., Shamshina, J. L., Gurau, G., Berton, P., Khan, N. F. A. F. and Rogers, R. D., 2017. A platform for more sustainable chitin films from an ionic liquid process. Green Chemistry. 19, pp. 117-126. https://doi.org/10.1039/C6GC02201D.

Knorr, D., Zenker, M., Heinz, V. and Lee, D.U. 2004. Applications and potential of ultrasonics in food processing. Trends in Food Science and Technology. 15, pp. 261-266. https://doi.org/10.1016/j.tifs.2003.12.001.

Kohmei, K.L. A., Toshiya, N., Keiichi, T., Yutaka, Y. and Masahiko, E., 1993. Depolymerization of hyaluronan by sonication. Glycoconjugate Journal. 10, pp. 435-439. https://doi.org/10.1007/BF00737963.

Liñán Cabello, M. A. and Paniagua, M. J., 2002. Bioactive roles of carotenoids and retinoids in crustaceans. Aquaculture Nutrition. 10, pp. 299-309. https://doi.org/10.1046/j.1365-2095.2002.00221.x.

Liñán Cabello, M. A. and Paniagua M. J., 2004. Induction factors derived from carotenoids and vitamin A during the ovarian maturation of Litopenaeus vannamei. Aquaculture International. 12, pp. 583-592. https://doi.org/10.1007/s10499-004-1088-7.

Mao S, A. C., Mäder, K. and Kissel, T., 2007. Characterization of chitosan and its derivatives using asymmetrical flow field-flow-fractionation: A comparison with traditional methods. Journal of Pharmaceutical and Biomedical Analysis. 45, pp. 736-741. https://doi.org/10.1016/j.jpba.2007.08.012.

Martín, L., Medina, T., Patrón, V., Ramirez, A. T. and Pacheco, L., 2017. Obtención de quitosano a partir del exoesqueleto de camarón mediante extracción asistida por ultrasonido. Memorias de congreso XXXVIII Encuentro Nacional de la AMIDIQ 9 al 12 de mayo de 2017, Ixtapa-Zihuatanejo, Guerrero, México.

Monter, Miranda, J., Tirado Gallegos, J., Zamudio Flores, P., Rios Velasco, C., Ornelas Paz, J.D. J., Salgado Delgado, R., Espinosa Solis, V. and Hernández Centeno, F., 2016. Extracción y caracterización de propiedades fisicoquímicas, morfológicas y estructurales de quitina y quitosano de Brachystola magna (Girard). Revista Mexicana de Ingeniería Química. 15, pp. 749-761. https://www.redalyc.org/articulo.oa?id=62048168007.

Morillo de Montiel, N. J. and Belandria Briceño, J. C., 2008. Recuperación de quitina a partir de los residuos sólidos generados del procesamiento industrial de crustáceos. Revista cubana de química. 3, pp. 17-26. https://www.redalyc.org/articulo.oa?id=443543715003.

Muthukumaran, S., Kentish, S., Lalchandani, S., Ashokkumar, M. and Mawson, R., 2005. The optimisation of ultrasonic cleaning procedures for dairy fouled ultrafiltration membranes. Ultrasonics Sonochemistry. 12, pp. 29–35. https://doi.org/10.1016/j.ultsonch.2004.05.007.

Neves, A. C., Zanette, C., Grade, S., T., Schaffer, J. V., Alves, H. J. and Arantes, M. K., 2017. Optimization of lactic fermentation for extraction of chitin from freshwater shrimp waste. Acta Scientiarum. Technology. 39, pp.2-125. DOI: https://doi.org/10.4025/actascitechnol.v39i2.29370.

Pacheco, N., Garnica, M., Ramírez, J.Y., Flores, B., Gimeno, M., Bárzana E. and Shirai K., 2009. Effect of temperature on chitin and astaxanthin recoveries from shrimp waste using lactic acid bacteria, Bioresource Technology. 100, pp. 2849–2854. https://doi.org/10.1016/j.biortech.2009.01.019.

Porras Barrientos, L.D., González Hurtado, M.I., Ochoa González, O.A., Sotelo Díaz, L.I., Camelo Méndez, G.A. and Quintanilla Carvajal, M.X., 2015. Colorimetric image analysis as a factor in assessing the quality of pork ham slices during storage. Revista Mexicana de Ingeniería Química. 14, pp. 243-252. https://www.redalyc.org/articulo.oa?id=62041194002.

Ramírez, R, J.C. 2009. Aprovechamiento de fauna de acompañamiento del camarón y subproductos pesqueros mediante la elaboración de ensilado de pescado. Tesis de doctorado en Biotecnología, Universidad Autónoma Metropolitana, México. http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S1665-27382008000300003&lng=es&tlng= .

Rao, M.S., Muñoz, J. and Stevens, W.F., 2000. Critical factors in chitin production by fermentation of shrimp biowaste. Applied Microbiology and Biotechnology. 54, pp. 808–813. https://doi.org/10.1007/s002530000449.

Ríos Velasco, C., Berlanga Reyes, D.I., Valdez Licano, R., Romo Chacón, A., Acosta Muñiz, C. H., Zamudio Flores, P. B., Sepulveda Ahumada, D. R. and Jacobo Cuellar, J. L., 2014. Caracterización y control microbial del chapulín gordinglón Brachystola magna Girald en fríjol en el Estado de Chihuahua. Folleto Técnico. Centro de Investigación en Alimentación y Desarrollo, A.C., Fundación Produce Chihuahua. https://docplayer.es/40163547-Caracterizacion-y-control-microbial-del-chapulin-gordinflon-brachystola-magna-girard-en-frijol-en-el-estado-de-chihuahua.html.

Riou, M. and Christide, J.P., 2010. Cryptic Color Change in a Crab Spider (Misumena vatia): Identification and Quantification of Precursors and Ommochrome Pigments by HPLC. Journal of Chemical Ecologyl. 36, pp. 412–423. https://doi.org/10.1007/s10886-010-9765-7.

Sun, T., Liu, X., Sun, G., Long, R. and Liu, Z., 2016. Grasshopper plague control in the alpine rangelands of the qilian mountains, China. A socio-economic and biological approach. Land Degradation & Development. https://doi.org/10.1002/ldr.2494.

Salazar Leyva, J.A., Lizardi Mendoza, J., Ramírez Suarez, J.C., García Sánchez, G., Ezquerra Brauer, J.M., Valenzuela Soto, E.M., Carvallo Ruiz, M.G., Lugo Sánchez, M.E. and Pacheco Aguilar, R., 2014. Utilización de materiales a base de quitina y quitosano en la inmovilización de proteasas: efectos en su estabilización y aplicaciones. Revista Mexicana de Ingeniería Química. 13, pp. 129-150. http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S1665-27382014000100011&lng=es&tlng=es

Shaofang, L., Jie S., Lina, Y., Chushu, Z., Jie B., Feng, Z., Mingjing, Q., Chen, J. and Qingli, Y., 2012. Extraction and Characterization of Chitin from the Beetle Holotrichia parallela Motschulsky. Molecules. 17, pp. 4604-4611. https://doi.org/10.3390/moléculas17044604.

Shrinivas, M and Stevens, W., 2005. Chitin production by Lactobacillus fermentation of shrimp biowaste in a drum reactor and its chemical conversion to chitosan. Journal of Chemical Technology and Biotechnology. 80, pp. 1080-1087. https://doi.org/10.1002/jctb.1286.

Sini, T.K., Santhosh, S. and Mathew, P.T., 2007. Study on the production of chitin and chitosan from shrimp shell by using Bacillus subtilis fermentation. Carbohydrate Research 342, pp. 2423–2429. https://doi.org/10.1016/j.carres.2007.06.028.

Sorokulova, I., Krumnow, A., Globa, L. and Vodyanoy, V., 2009. Efficient decomposition of shrimp shell waste using Bacillus cereus and Exiguobacterium acetylicum. Journal Industrial Microbiology Biotechnology. 36, pp. 1123– 1126. https://doi.org/10.1007/s10295-009-0587.

Soto León, S., Zazueta Patrón, I. E., Piña Valdez, P., Nieves Soto, M., Reyes-Moreno, C. and Contreras-Andrade, I. 2014. Extracción de lípidos de Tetraselmis suecica: proceso asistido por ultrasonido y solventes. Revista mexicana de ingeniería química. 13, pp. 723-737. http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S1665-27382014000300007&lng=es&tlng=es.

Tharanathan, R. N. and Kittur, F. S., 2003. Chitin the undisputed biomolecule of great potential. Critical Reviews in Food Science and Nutrition. 43, pp. 61-87. https://doi.org/10.1080/10408690390826455.

Wahyuntari, B. J. and Setyahadi, S., 2011. Process Design of Microbiological Chitin Extraction, Microbiology Indonesia. 5, pp. 39-45. https://doi.org/10.5454/mi.5.1.7.

Xu, Y., Gallert, C. and Winter, J., 2008. Chitin purification from shrimp wastes by microbial deproteination and decalcification. Applied Microbiology and Biotechnology. 79, pp. 687–697. https://doi.org/10.1007/s00253-008-1471-9.

Zadorozhny, P. A., Borisovets, E. E., Yakush, E. V., and Davidyuk, T. S., 2008. Change of Carotenoid Composition in Crabs during Embryogenesis. Journal of Evolutionary Biochemistry and Physiology. 44, pp. 450-461. https://doi.org/10.1134/S0022093008040054.

Zhang H., Yun S., Song L., Zhang Y. and Zhao Y., 2016. The preparation and characterization of chitin and chitosan under large-scale submerged fermentation level using shrimp by-products as substrate. International Journal of Biological Macromolecules. 96, pp. 334–339. https://doi.org/10.1016/j.ijbiomac.2016.12.017.




URN: http://www.revista.ccba.uady.mx/urn:ISSN:1870-0462-tsaes.v25i3.42404

DOI: http://dx.doi.org/10.56369/tsaes.4240



Copyright (c) 2022 ADOLFO AMADOR MENDOZA, José Manuel Juárez Barrientos, Hipólito Hernández Hernández, Laura Patricia Ramírez Coutiño, Sergio Huerta Ochoa, Erasmo Herman Lara, Jesús Rodríguez Miranda

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.