GERMINATION AND MORPHOLOGICAL ASPECTS OF Echinocactus platyacanthus Link & Otto SEEDLINGS TREATED WITH GAMMA RAYS

Oscar Martín Antúnez-Ocampo, Gerardo A. Castañeda-Zárate, Juan Elias Sabino-López, Mariana Espinosa-Rodríguez, Serafín Cruz-Izquierdo

Abstract


Background. The sweet biznaga (Echinocactus platyacanthus) is endemic to Mexico, whose seeds show low germination, viability, longevity, genetics, and latency; therefore, gamma irradiation is an alternative to stimulate the emergence and growth of seedlings, by causing variations in the chemical composition of DNA, which causes cytological, biochemical, physiological and morphological changes in plants. Objective. The objective of the present investigation was to evaluate the effect of different doses of gamma 60Co radiation on seed germination and seedling vigor of E. platyacanthus. Methodology. E. platyacanthus seeds were irradiated at 0, 50, 100, 150, 200, 250, 300, 350, 400, 450, 500 and 550 Gy of 60Co gamma rays, then they were sown in transparent plastic containers covered with filter paper and were distributed in a completely randomized design with four repetitions in a germination chamber, the percentage of germination and survival of seedlings in the container was recorded 30 days after sowing (das). The seedlings were transplanted at 30 das into black polyethylene bags with tezontle and established in a completely randomized design with 12 treatments and four replications, in a tunnel-type greenhouse. At 20 and 30 days after transplantation (dat) seedling vigor was measured based on height (cm), stem diameter (mm) and root length (mm) and at 20 dat survival was recorded (%) of seedling in the substrate. An analysis of variance and Tukey's test for comparison of means (p ≤ 0.05) were performed. Results. Gamma irradiation stimulated seed germination from 10 to 29%. In seedlings, root height and length were modified with intermediate doses of gamma rays (100 to 200 Gy); but higher doses negatively affected these indicators. Survival of containerized M1 seedlings was up to 63% higher than the control, depending on the irradiation dose. Implications. Irradiation with 60Co gamma rays improves seed germination, survival and vigor of E. platyacanthus seedlings. Conclusions. Irradiation with 60Co gamma rays stimulated seed germination and improved some characteristics of vigor in E. platyacanthus seedlings, by modifying root height and length according to age. In addition, it increased the survival of containerized seedlings.

Keywords


sweet biznaga; Echinocactus platyacanthus; germination; seedling; gamma rays.

Full Text:

PDF

References


Ahuja, S., Kumar, M., Kumar, P., Gupta, V. K., Singhal R. K., Yadav, A. and Singh, B., 2014. Metabolic and biochemical changes caused by gamma irradiation in plants. Journal of Radioanalytical and Nuclear Chemistry, 300, pp. 199-212. https://doi.org/10.1007/s10967-014-2969-5.

Akgun, I. and Tosun M., 2004. Agricultural and cytological characteristics of M1 perennial rye (Secale montanum Guss.) as affected by the application of different doses of gamma rays. Pakistan Journal of Biological Sciences, 7, pp. 827-833.

Akshatha, K. and Chandrashekar, R., 2014. Gamma sensitivity of forest plants of Western Ghats. Journal of Environmental Radioactivity, 132, pp. 100-107. https://doi.org/10.1016/j.jenvrad.2014.02.006.

Ali, H., Ghori, Z., Sheikh, S. and Gul, A., 2015. Effects of gamma radiation on crop production. En: Crop Production and Global Environmental Issues. K. R. Hakeem (ed.). Springer International Publishing. Springer, Cham. Suiza. pp. 27-78. https://doi.org/10.1007/978-3-319-23162-4_2.

Álvarez, A., Ramírez, R., Chávez, L., Camejo, Y., Licea, L., Porras, E. and García, B., 2011. Efectos del tratamiento de semillas con láser de baja potencia sobre el crecimiento y rendimiento en plantas de tomate (Solanum lycopersicum L.). ITEA, 107, pp. 290-299.

Álvarez, F. A., Chávez, S. L., Ramírez, F. R., Estrada, P. W., Estrada, L. Y. and Maldonado, R. A., 2013. Efecto del tratamiento de semillas con bajas dosis de rayos X en plantas de pimiento (Capsicum annuum L.). Nucleus, 53, pp. 14-18.

Álvarez, F. A., Chávez Suárez, L., Ramírez F. R., Pompa B. R. and Estrada, P. W., 2012. Indicadores fisiológicos en plántulas de Solanum lycopersicum L., procedentes de semillas irradiadas con rayos X. Biotecnología Vegetal, 12, pp. 173-177. https://revista.ibp.co.cu/index.php/BV/article/view/172/html.

Álvarez-Holguín, A., Morales-Nieto, C. R., Avendaño-Arrazate, C. H., Santellano-Estrada, E., Melgoza-Castillo, A., Burrola-Barraza, M. E. and Corrales-Lerma, R., 2018. Dosis letal media y reducción media del crecimiento por radiacióngamma en pasto africano (Eragrostis lehmanniana Ness). Ecosistemas y Recursos Agropecuarios, 5, pp. 81-88. https://doi.org/10.19136/era.a5n13.1268.

Anbarasan, K., Rajendran, R. Sivalingam, D., Anbazhagan, M. and Chidambaram A., 2013. Effect of gamma radiation on seed germination and seedling growth of Sesame (Sesamum indicum L.) Var.TMV3. International Journal Research in Botany, 3, pp. 27-29.

Antúnez-Ocampo, O. M., Cruz-Izquierdo, S., Sandoval-Villa, M., Santacruz-Varela, A., Mendoza-Onofre, L. E. and De la Cruz-Torres, E., 2017. Variabilidad inducida en caracteres fisiológicos de Physalis peruviana L. mediante rayos gamma 60Co aplicados a la semilla. Revista Fitotecnia Mexicana, 40, pp. 211-218.

Araújo, S., Paparella, S., Dondi, D., Bentivoglio, A., Carbonera, D. and Balestrazzi, A., 2016. Physical methods for seed invigoration: advantages and challenges in seed technology. Frontiers in Plant Science, 7, pp. 646. https://doi.org/10.3389/fpls.2016.00646.

Ayala-Cordero, G., Terrazas, T., López-Mata, L. and Trejo, C., 2004. Variación en el tamaño y peso de la semilla y su relación con la germinación en una población de Stenocereus beneckei. Interciencia, 29, pp. 692-697.

Baskin, C. C. and Baskin, J. M., 2014. Seed: Ecology. Biogeography, and Evolution of Dormancy and Germination. Elsevier Inc., pp. 600.

Bravo-Hollis, H. and Scheinvar, L., 1999. El interesante mundo de las cactáceas. Fondo de Cultura Económica. UNAM. México. pp. 233.

Canul-Ku, J., García-Pérez, F., Campos-Bravo, E., Barrios-Gómez, E. J., De la Cruz-Torres, E., García-Andrade, J. M., Osuna-Canizalez, F. J. and Ramírez-Rojas, S., 2012. Efecto de la irradiación sobre nochebuena silvestre (Euphorbia pulcherrima Willd. ex Klotzsch) en Morelos. Revista Mexicana de Ciencias Agrícolas, 3, pp. 1495-1507.

Castillo-Martínez, C. R., De la Cruz-Torrez, E., Carrillo-Castañeda, G. and Avendaño-Arrazate, C. H., 2015. Inducción de mutaciones en crisantemo (Dendranthema grandiflora) usando radiación gamma y etil metano sulfonato. Agroproductividad, 8, pp. 60-64.

Chandrashekar, K. R. A. 2014. Gamma sensitivity of forest plants of Western Ghats. Journal Environmental Radioactivity, 132, pp. 100-107. https://doi.org/10.1016/j.jenvrad.2014.02.006

Chen, Y. P., Liu, Y. J., Wang, X. L., Ren, Z. Y. and Yue, M., 2005. Effect of microwave and He-Ne laser on enzyme activity and biophoton emission of Isatis indigotica Fort. Journal of Integrative Plant Biology, 47, pp. 849-855. https://doi.org/10.1111/j.1744-7909.2005.00107.x

Cheng, L., Yang, H., Lin, B., Wang, Y., Li, W., Wang, D. and Zhang, F., 2010. Effect of gamma-ray radiation on physiological, morphological characters and chromosome aberrations of minitubers in Solanum tuberosum L. International Journal of Radiation Biology, 86, pp. 791-799. https://doi.org/10.3109/09553002.2010.484478.

De la Fé, C., Romero, M., Ortiz R. and Ponce M., 2000. Radiosensibilidad de semillas de soya a los rayos gamma 60Co. Cultivos Tropicales, 21, pp. 43-47.

De Micco, V., Arena, C., Pignalosa, D. and Durante, M., 2011. Effects of sparsely and densely ionizing radiation on plants. Radiation and Environmental Biophysics, 50, pp. 1-19. https://doi.org/10.1007/s00411-010-0343-8.

Deshpande, K. N., Mehetre S. S. and Pingle, S. D., 2010. Effect of different mutagens for induction of mutations in mulberry. Asian Journal of Experimental Biological Sciences, 1, pp. 104-108.

Díaz, L. E., 2020. Estudio de radiosensibilidad de chía negra (Salvia hispanica L.) (Lamiaceae), bajo siete niveles de irradiación gamma. Revista del Centro de Investigación de la Universidad La Salle, 14, pp. 37-48. http://doi.org/10.26457/recein.v14i54.2695.

El-Beltagi, H.S., Ahmed, O. K., and El-Desouky, W., 2011. Effect of low doses ?-irradiation on oxidative stress and secondary metabolites production of rosemary (Rosmarinus officinalis L.) callus culture. Radiation Physics and Chemistry, 80, pp. 968-976.

Flores, J. and Jurado, E., 2011. Germinación de especies de cactáceas en categoría de riesgo del desierto chihuahuense. Revista Mexicana de Ciencias Forestales, 2, pp. 59-70.

Flores-Martínez, A., Manzanero, G., Rojas-Aréchiga, M., Mandujano, M. C. and Golubov, J., 2008. Seed age germination responses and seedling survival of an endangered cactus that inhabits cliffs. Natural Areas Journal, 28, pp. 51-57.

Goettsch, B., Hilton-Taylor, C., Cruz-Piñón, G., Duffy, J. P., Frances, A., Hernández, H. M., Inger, R., Pollock, C., Schipper, J., Superina M., Taylor, N. P., Tognelli, M., Abba, A. M., Arias, S., Hilda J. Arreola-Nava, H. J., Baker, M. A., Bárcenas, R. T., Barrios, D., Braun, P., Charles A. Butterworth, C. A., Búrquez, A., Caceres, F., Chazaro-Basañez, M., Corral-Díaz, R., Del Valle P. M., Demaio, P. H., Williams A. Duarte B. W. A., Durán, R., Faúndez, Y. L., Felger, R. S., Fitz-Maurice, B., Fitz-Maurice, W. A., Gann, G., Gómez-Hinostrosa, C., Gonzales-Torres, L. R., Griffith, M. P., Guerrero, P. C., Hammel, B., Heil, K. D., Hernández-Oria, J. G., Hoffmann, M., Ishiki I. M., Kiesling, R., Larocca, J., León-de la Luz, J. L., Loaiza S. C. R., Lowry, M., Machado, M. C., Majure, L. C., Martínez A. J. G., Martorell, C., Maschinski, J., Méndez, E., Mittermeier, R. A., Nassar, J. M., Negrón-Ortiz, V., Oakley, L. J., Ortega-Baes, P, Pin F. A. B., Pinkava, D. J., Porter, J. M., Puente-Martinez, R., Roque Gamarra, J., Saldivia P. P., Sánchez M. E., Smith , Sotomayor M. del C. J. M., Stuart, S N., Tapia M. J. L., Terrazas, T. T., Terry M., Trevisson, M., Valverde, T., Van Devender, T. R, Véliz-Pérez, M. E., Walter, H. E., Wyatt, S. A., Zappi, D., Zavala-Hurtado, J. A. and Gaston, K. J. 2015. High proportion of cactus species threatened with extinction. Nature Plants, 1, 15142, pp. 1-7. https://doi.org/10.1038/nplants.2015.142.

González, C. M. and Nakayama D. H., 2015. Radioestimulación de la germinación en Stevia rebaudiana cultivar KH-IAN VC-142 (Eireté), mediante el empleo de rayos gamma 60Co. Cultivos Tropicales, 36, pp. 117-119.

Hernández-Muñoz, S., Pedraza-Santos, M. E., López, P. A., De la Cruz-Torres, E., Martínez-Palacios, A., Fernández-Pavía, S. P. and Chávez-Bárcenas, A. T., 2017. Estimulación de la germinación y desarrollo in vitro de Laelia autumnalis con rayos gamma. Revista Fitotecnia Mexicana, 40, pp. 271-283.

Jan, S., Parween, T., Siddiqi, T. O. and Mahmooduzzafara., 2012. Effect of gamma radiation on morphological, biochemical, and physiological aspects of plants and plant products. Environmental Reviews, 20, pp. 17-39. https://doi.org/10.1139/a11-021.

Jiménez-Sierra, C. L. and Eguiarte, L. E., 2010. Candy Barrel Cactus (Echinocactus platyacanthus Link & Otto): A Traditional Plant Resource in Mexico Subject to Uncontrolled Extraction and Browsing. Economic Botany, 64, pp. 99-108. https://doi.org/10.1007/s12231-010-9119-y

Kim, J. H., Baek, M. H., Chung, B. Y., Wi S. G. and Kim, J. S., 2004. Alterations in the photosynthetic pigments and antioxidant machineries of red pepper (Capsicum annuum L.) seedlings from gamma-irradiated seeds. Journal of Plant Biology, 47, pp. 314-321. https://doi.org/10.1007/BF03030546.

Lagoda, P. J. L., 2011. Effects of radiation on living cells and plants. In: Plant Mutation and Biotechnology. Shu Q.Y. B. P. Forster and H. Nakagawa (eds). Plant Breeding and Biotechnology. Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture. International Atomic Energy Agency. Vienna, Austria. pp. 123-134. https://doi.org/10.1079/9781780640853.0123.

Larrea-Alcázar, D. M. and López, R. P., 2008. Germinación de semillas de Corryocactus melanotrichus (K. Schum.) Britton & Rose (Cactaceae): un cactus columnar endémico de los Andes bolivianos. Ecología en Bolivia, 43, pp. 135-140.

Majeed, A., Muhammad, Z., Ullah, R., Ullah Z., Ullah R., Chaudhry Z. and Siyar, S., 2017. Effect of gamma irradiation on growth and post-harvest storage of vegetables. PSM Biological Research, 2, pp. 30-35.

Marcu, D., Damian, G., Cosma C. and Cristea, V., 2013. Gamma radiation effects on seed germination, growth and pigment content, and ESR study of induced free radicals in maize (Zea mays). Journal of Biological Physics, 39, pp. 625-634. https://doi.org/10.1007/s10867-013-9322-z.

Márquez-Guzmán, J., Collazo-Ortega, M., Martínez-Gordillo, M., Orozco-Segovia, A. and Vázquez-Santana, S., 2013. Biología de angiospermas. Facultad de Ciencias, UNAM. pp. 602.

Mortazavi, S. M. J., Ghiassi?Nejad, M. and Ikushima, T., 2002. Do the findings on the health effects of prolonged exposure to very high levels of natural radiation contradict current ultra conservative radiation protection regulations? International Congress Series, 1236, pp. 19- 21.

Muckerheide, J., 2004. There has never been a time that the beneficial effects of low dose ionizing radiation were not known. Center for Nuclear Technology and Society at WPI. Radiation, Science, and Health. Worcester, MA. USA. pp. 4.

Navarro, C. Ma., Tzompa R. and González, E. M., 2014. Propagación de Echinocactus platyacanthus: efectos del sustrato, viabilidad y escarificación de semillas. Zonas Áridas, 15, pp. 31-47.

Norma Oficial Mexicana 059 SEMARNAT., 2010. Protección ambiental-Especies nativas de México de flora y fauna silvestres-Categorías de riesgo y especificaciones para su inclusión, exclusión o cambio-Lista de especies en riesgo. pp. 78. https://www.profepa.gob.mx/innovaportal/file/435/1/NOM_059_SEMARNAT_2010.pdf.

Oladosu, Y., Rafii, M. Y., Abdullah, N., Hussin, G., Ramli, A., Rahim, H. A., Miah, G. and Usman, M., 2016. Principle and application of plant mutagenesis in crop improvement: a review. Biotechnology and Biotechnological Equipment, 30, pp. 1-16. https://doi.org/10.1080/13102818.2015.1087333.

Olasupo, F. O., Ilori, C. O., Forster, B. P. and Bado, S., 2016. Mutagenic effects of gamma radiation on eight accessions of Cowpea (Vigna unguiculata [L.] Walp.). American Journal of Plant Sciences, 7, pp. 339-351. https:// doi.org/10.4236/ajps.2016.72034.

Porta, C. R. and Jiménez. E. J., 2018. Efectos de agentes mutagénicos en la germinación de semillas de aguaymanto. Scientia Agropecuaria, 9, pp. 231-238. http://doi.org/10.17268/sci.agropecu.2018.02.08.

Rajarajan, D., Saraswathi R. and Sassikumar, D., 2016. Determination of lethal dose and effect of gamma ray on germination percentage and seedling parameters in ADT (R) 47 rice. International Journal of Advanced Biological Research, 6, pp. 328-332.

Ramírez, R., González, L. M., Licea, L., García, B., Porras, E. and Pérez, A., 2006. Incidencia de bajas dosis de rayos X sobre la productividad de cuatro variedades de tomate (Lycopersicon esculentum Mill.). Alimentaria, 314, pp. 56-64.

Rojas-Aréchiga, M. and Batis, A. I., 2001. Las semillas de cactáceas ¿Forman bancos en el suelo?. Cactáceas y Suculentas Mexicanas, 46, pp. 75-81.

Sánchez-Salas, J., Flores, J. and Martínez-García, E., 2006. Efecto del tamaño de semilla en la germinación de Astrophytum myriostigma Lemaire. (Cactaceae), especie amenazada de extinción. Interciencia, 31, pp. 371-375.

SAS Institute., 2002. SAS/STAT User’s Guide. Version 9.1. Volumes 1 - 7. SAS Institute. Cary, NC, USA.

Songsri P., Suriharn B., Sanitchon J., Srisawangwong S. and Kesmala T., 2011. Effects of Gamma radiation on germination and growth characteristics of physic nut (Jatropha curcas L.). Journal of Biological Sciences, 11, pp. 268-274.

Thole, V., Peraldi, A., Worland B., Nicholson, P., Doonan, J. H. and Vain, P., 2011. T-DNA mutagenesis in Brachypodium distachyon. Journal of Experimental Botany, 10, pp. 1-10. https://doi.org/10.1093/jxb/err333.

Trejo-Téllez, L. I., Ramírez-Martínez M., Gómez-Merino, F. C., García-Albarado, J. C., Baca-Castillo, G. A. and Tejeda-Sartorius, O., 2013. Evaluación física y química de tezontle y su uso en la producción de tulipán. Revista Mexicana de Ciencias Agrícolas, 5, pp. 863-876.




URN: http://www.revista.ccba.uady.mx/urn:ISSN:1870-0462-tsaes.v25i3.42357

DOI: http://dx.doi.org/10.56369/tsaes.4235



Copyright (c) 2022 Juan Elias Sabino

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.