CHEMICAL COMPOSITION AND In vitro RUMINAL FERMENTATION OF CAYMAN (BR/1752) AND COBRA (BR/1794) GRASSES GROWN UNDER SALT STRESS CONDITIONS

Serafín Jacobo López-Garrido, Silvia Santos-Jerónimo, Edgar Iván Sánchez-Bernal, Mónica Marcela Galicia-Jiménez, Narciso Ysac Ávila-Serrano, Marco Antonio Camacho-Escobar, Paulino Sánchez-Santillán, David Hernández-Sánchez

Abstract


Background. The saline stress of tropical soils affects the growth and nutritional composition of pastures, therefore the availability and quality of forage for livestock is affected. Salinity can reduce crude protein content and increase the neutral detergent fiber (NDF) ratio of grasses. This can decrease ruminal degradability, microbial populations, and alter the production of volatile fatty acids (VFA), which are the main source of energy for ruminants. On the other hand, an increase in NDF in pastures can increase the emission of methane (CH4). For this reason, it is necessary to generate sufficient information on the nutritional quality of pastures grown in saline soils and their ruminal fermentation patterns. Objective. Evaluate hybrid grasses of the genus Urochloa, Cayman and Cobra grown in five concentrations of salinity, to determine their effect during in vitro ruminal fermentation, on chemical composition, degradability, fermentation parameters, ruminal microorganisms, on the production of CH4 and CO2. Methodology. Five experimental treatments were evaluated: salinity levels for both pastures of 0, 2, 4, 6, 10 dS m-1 of NaCl. The chemical composition of the two experimental grasses was determined, and subsequently they were incubated in vitro in a culture medium for total bacteria with the addition of fresh ruminal fluid, to determine dry matter degradability (DIVMS), ruminal fermentation parameters, microbial populations, and biogas production. Results. Cayman grass presented higher (P<0.05) ash content and ether extract at CE ≥ 4 dS m-1; however, its crude protein content decreased. In Cobra grass there was also protein reduction at 10 dS m-1. In both DIVMS grasses, AGV and CH4 production were not affected by salinity, nor were there changes in the count of ruminal microorganisms. Implications. The results of the present study evaluate the effect of salinity on crude protein content and cell walls of Cayman and Cobra grasses grown under salinity stress. It was determined that salinity does not affect the degradability or ruminal fermentation patterns of the pastures studied. Conclusions. With a salinity level of 10 dS m-1, the protein of Cayman and Cobra grasses decreased 8.42% and 18.0%, respectively. The salinity levels studied do not affect IVDMD, microbial population, or CH4 production during in vitro ruminal fermentation of the evaluated species.

Keywords


Cayman and Cobra; chemical composition; salinity; fermentation; methane.

Full Text:

PDF

References


Abdelhamid-Magdi, T., Sadak-Mervat, S.H., Schmidhalter, R.S. and El-saady, A.M., 2013. Interactive effects of salinity stress and nicotinamide on physiological and biochemical parameters on faba bean plant. Acta Biológica Colombiana, 18(3), pp. 499-510. https://revistas.unal.edu.co/index.php/actabiol/article/view/38953

Al-Dakheel, A.J., Iftikhar-Hussain, M. and Abdul-Rahman, A.M., 2015. Impact of irrigation water salinity on agronomical and quality attributes of Cenchrus ciliaris L. accessions. Agricultural Water Management 159, pp. 148-154. https://doi.org/10.1016/j.agwat.2015.06.014

AOAC. Official methods of analysis. 1997. Association of Official Analytical Chemists International. 16th ed. Virginia, USA. pp. 69-83.

Araujo-Febres, O. and Vergara-López, J., 2007. Propiedades físicas y químicas del rumen. Archivos Latinoamericanos de Producción Animal 15 (Suplemento 1), pp. 133-140. http://www.bioline.org.br/pdf?la07044

Attia-Ismail, S.A., 2015. Rumen physiology under high salt stress. pp:348-357 In: El Shaer and Squires, editors. Halophytic and Salt Tolerant Feedstuffs: Impacts on Nutrition, Physiology and Reproduction of Livestock. https://doi.org/10.1201/b19862

Barkla, B.J., Vera-Estrella, R., Balderas, E. and Pantoja, O., 2007. Mecanismos de tolerancia a la salinidad en plantas. Biotecnología 24 pp. 263-272. https://www.researchgate.net/profile/Omar-Pantoja/publication/237419076_Mecanismos_de_tolerancia_a_la_salinidad_en_plantas/links/0deec532bc8ca65bca000000/Mecanismos-de-tolerancia-a-la-salinidad-en-plantas.pdf

Ben-Ghedalia, D., Solomon, R., Miron, J., Yosef, E., Zomberg, Z., Zukerman, E., Greeberg, A. and T. Kipnis, A., 2001. Effect of water salinity on the composition and in vitro digestibility of winter-annual Ryegrass grown in the Arava desert. Animal Feed Science and Technology 91, pp. 139-147. https://doi.org/10.1016/S0377-8401(01)00218-8

Boga, M., Yurtseven, S., Kilic, U., Aydemir, S. and Polat, T., 2014. Determination of nutrient contents and in vitro gas production values of some legume forages grown in the Harran Plain Saline Soils. Asian Australasian. Journal Animal Science 27(6) pp. 825-831. https://doi.org/10.5713/ajas.2013.13718

Bustamante, C.G. and Cuba, P.G., 2013. Electrolitos. Revista de Actualización Clínica 39, pp. 2017-2022. https://www.academia.edu/34686789/Revista_de_Actualizaci%C3%B3n_Cl%C3%ADnica_Volumen_39

Camacho-Escobar, M. A., Galicia-Jiménez, M. M., Sánchez-Bernal, E. I., Ávila-Serrano, N. Y. y López-Garrido, S. J., 2020. Producción de metano y bióxido de carbono in vitro de pastos tropicales de la costa de Oaxaca, México. Terra Latinoamericana Número Especial 38(2), pp. 425-434. https://doi.org/10.28940/terra.v38i2.628.

Casierra-Posada, F., Ebert, G. y Lüdders, P., 2000. Efecto de la salinidad por cloruro de sodio sobre el balance de nutrientes en plantas de lulo (Solanum quitoense L.). Agronomía Colombiana 17, pp. 85-90. https://revistas.unal.edu.co/index.php/agrocol/article/view/21591

Cobos-Peralta, M.A and Yokoyama, M. T., 1995. Clostridium paraputrificum var. Ruminantium: colonization and degradation of shrimp carapaces in vitro observed by scanning electron microscopy. pp:151-161 In: Rumen Ecology Research Planning. Proc. of Workshop held at International Livestock Research Institute. Addis Abeba, Etiopía. Nairobi, Kenya. https://cgspace.cgiar.org/handle/10568/2725

Cobos-Peralta, M.A., Mata-Espinosa, M.A., Pérez-Sato, M., Hernández-Sánchez, D. y Ferrera-Cerrato, R., 2011. Envases de polietilentereftalato molidos y su función como sustituto de fibra en la dieta de borregos. Agrociencia 45, pp. 33-41. http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S1405-31952011000100004&lng=es&nrm=iso

Cobos-Peralta, M.A., Curzaynz-Leyva, K.R., Rivas-Martínez, M.I., Santillán-Gómez, E.A. y Bárcena-Gama, J. R., 2018. Efecto in vitro de dietas para corderos más un suplemento de granos secos de destilería en la fermentación ruminal y emisiones de gases. Agrociencia 52(2), pp. 203-215. http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S1405-31952018000200203&lng=es&nrm=iso

Costa, E. C. B., Araujo, G. G. L., Olivera, J. S., Santos, E. M., Enriques, L. T., Perazzo, A. F., Zanine A. M., Pereira, G. A. and Pinno, R. M. A., 2019. Effect of salt concentrations on in vitro rumen fermentation on cellulose, starch and protein. South African Journal of Animal Science 49(6), pp.1139-1146. https://www.ajol.info/index.php/sajas/article/view/193637

El Shaer, H.M., 2010. Halophytes and salt-tolerant plants as potential forage for ruminants in the Near East region. Small Ruminant Research 91(1), pp. 3-12. https://doi.org/10.1016/j.smallrumres.2010.01.010

Elfeel, A. and Bakhashwain, A.A., 2012. Salinity effects on growth attributes mineral uptake, forage quality and tannin contents of Acacia saligna (Labill.) H. Wendl. Research Journal of Environmental and Earth Science 4(11), pp. 990-995. https://maxwellsci.com/print/rjees/v4-990-995.pdf

Erwin, E. S., Marco G.J. and Emery E.M., 1961. Volatile fatty acid analysis of blood and rumen fluid by gas chromatography. Journal Dairy Science 44, pp. 1768-1776. https://doi.org/10.3168/jds.S0022-0302(61)89956-6

Fernández-Martínez, S. I., 2010. Análisis espacial geo estadístico para caracterizar la salinidad de los suelos del ex lago de Texcoco, México. Tesis de licenciatura. Universidad Autónoma Chapingo, Texcoco, México.

Ferreira, S.J., Cornacchione, M.V., Liu, X. and Suarez, D.L., 2015. Nutrient composition, forage parameters, and antioxidant capacity of alfalfa (Medicago sativa, L.) in response to saline irrigation water. Agriculture 5, pp. 577-597. https://doi.org/10.3390/agriculture5030577

Fuentes, L., Y. Pérez, Y., Domínguez, A, Mesa, A.R., González S., 2008. Influencia del NaCl en indicadores bioquímicos evaluados en callos de Stylosanthes guianensis CIAT-184. Pastos y Forrajes 31(1), pp. 35-46. https://payfo.ihatuey.cu/index.php?journal=pasto&page=article&op=view&path[]=686

Glover, D. E., Kielly, G.A., Jefferson, P.G. and Cohen, R.D.H., 2004. Agronomic characteristics and nutritive value of 11 grasses grown with irrigation on a saline soil in southwestern Saskatchewan. Canadian Journal of Plant Science 8 pp. 1037-1050. https://doi.org/10.4141/P03-073

González-Romero, S.L., Quero-Carrillo, A.R., Franco-Mora, O, Ramírez-Ayala, C, Ortega-Escobar, H.M. and Trejo-López, C., 2011. Tolerancia a la salinidad del pasto Banderita (Bouteluoa curtipendula) en la etapa de germinación en dos regímenes de temperaturas. Ciencia Ergo Sum. 17(3), pp. 277-285. https://www.redalyc.org/pdf/104/10415212006.pdf

Harrigan, W.F. and E.M. McCance., 1979. Métodos de laboratorio en Microbiología de alimentos y productos lácteos. Ed. Academia. León, España, 361- 366 pp.

Herrera, G.R.S., 2014. Algunos aspectos que pueden influir en el rigor y la veracidad del muestreo de pastos y forrajes. Avances en Investigación Agropecuaria 18(2) pp. 7-26. https://doaj.org/article/d7bccf2311f248369af34c6f6e31fa99

Hungate, R.E., 1969. A roll tube method for cultivation of strict anaerobes. Methods in Microbiology. 3 pp. 117-132. https://doi.org/10.1016/S0580-9517(08)70503-8

Kaplan, M., Baser, M., Kale, H., Irik, H.A., I. Ulger, I. and Unlukara, A., 2017. Change in yield and chemical composition of tall fescue (festuca arundinacea schreb.) plants under salt stress. Turkish Journal of Field Crops 22(2), pp. 204-210. https://doi.org/10.17557/tjfc.356220

Kara, K., Aktug, E. and Özkaya, S., 2016. Ruminal digestibility, microbial count, volatile fatty acids and gas kinetics of alternative forage sources for arid and semi-arid areas as in vitro. Italian Journal of Animal Science 15(4). Pp. 673-680. https://doi.org/10.1080/1828051X.2016.1249420

Kosová, K., Prášil, I.T. and Vítámvás, P., 2013. Protein contribution to plant salinity response and tolerance acquisition. International Journal of Molecular Sciences 14, pp. 6757-6789. https://doi.org/10.3390/ijms14046757

Krabill, L. F., Alhassan, W. S. and Satter, L. D., 1969. Manipulation of the ruminal fermentation. II. Effect of sodium sulfite on bovine digestion and ruminal fermentation. Journal Dairy Science. 52, pp. 1812-1816. https://doi.org/10.3168/jds.S0022-0302(69)86846-3

Krause, K. M., G. R. Oetzel and G. R., 2006. Understanding and preventing subacute ruminal acidosis in dairy herds: A review. Animal Feed Science and Technology 126 pp. 215–236. https://doi.org/10.1016/j.anifeedsci.2005.08.004

Kumar, A., Agarwal, S., Kumar, P. and Singh, A., 2010. Effects of salinity on leaf grain protein in some genotypes of oat (Avena sativa L.). Recent Research in Science and Technology 2(6), pp. 85-87. https://www.cabdirect.org/cabdirect/abstract/20103339552

Lams, P. A. y González, C. M. C., 2013. La salinidad como problema en la agricultura: La mejora vegetal una solución inmediata. Cultivos Tropicales 34(4), pp. 31-42. https://www.redalyc.org/pdf/1932/193228546005.pdf

Ley de Coss, A., C. Guerra-Medina, C., Montañez-Valdez, O., Guevara, F., Pinto, R. y Reyes-Gutiérrez, J., 2018. Producción in vitro de gas metano por gramíneas forrajeras tropicales. Revista MVZ Córdoba 23(3), pp. 6788-6798. https://doi.org/10.21897/rmvz.1368

Martínez-Villavivencio, N., López-Alonzo, C.V., Basurto-Sotelo, M. y Pérez-Leal, R., 2011. Efectos por salinidad en el desarrollo vegetativo. Tecnociencia 5(3), pp. 156-161. https://vocero.uach.mx/index.php/tecnociencia/article/view/694

Masters D., Edwards, N., Sillence, M., Avery, A., Revell, D., Friend, M., Sanford, P., Saul, G., Beverly, C. and Young, J., 2006. The role of livestock in the management of dryland salinity. Australian Journal of Experimental Agriculture 46, pp. 733-741. https://doi.org/10.1071/EA06017

McDonald, P., Edwards, R.A., Greenhalgh, J.F. and Morgan, C.A., 2002. Nutrición animal. Editorial Acribia, S.A. Zaragoza España. Sexta edición 91-120 pp.

Mellenberger R.W., Satter, L.D., Millett, L.A. and Baker, A.J., 1970. An in vitro technique for estimating digestibility of treated and untreated wood. Journal Animal Science 30, pp. 1005-1011. https://doi.org/10.2527/jas1970.3061005x

Müller-Queiroz, H., Sodek, L. and Baptista-Haddad, C.R., 2012. Effect of salt on the growth and metabolism of Glycine max. Brazilian Archives of Biology and Technology 55(6), pp. 809-817. https://doi.org/10.1590/S1516-89132012000600002

Munns, R., 2005. Genes and salt tolerance: bringing them together. New Phytologist 167, pp. 645–663. https://doi.org/10.1111/j.1469-8137.2005.01487.x

Muñoz-González, J.C., Huerta-Bravo, M., Lara-Bueno, A., Rangel-Santos, R., de la Rosa Arana, J.L. 2016. Producción y calidad nutrimental de forrajes en condiciones del Trópico Húmedo de México. Revista Mexicana de Ciencias Agrícolas 16, pp. 3315-3327. http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S2007-09342016001203315&lng=es&nrm=iso

Nack, M. F., Van Emon, M. L., Wayffels, S. A., Manoukian, M. K., Carlisle, T. J., Davis, N. G., Kirkpatrick, T. J., Kluth, J. A., DelCurto-Wyffels, H. M. and DelCurto, T., 2021. Impact of increasing levels of NaCl in drinking water on the intake and utilization of low-quality forages by beef cattle hand-fed a protein supplement or protein supplement containing 25% salt. Translational Animal Science 5, pp. S101-S105. https://doi.org/10.1093/tas/txab183

Ortega-Aguirre, C.A., Lemus-Flores, C., Bugarín-Prado, J.O, Alejo-Santiago, G., Ramos-Quirarte, A., Grageola-Núñez, O. y Bonilla-Cárdenas, J., 2015. Características agronómicas, composición bromatológica, digestibilidad y consumo animal en cuatro especies de pastos de los géneros Brachiaria y Panicum. Tropical and Subtropical Agroecosystems 18(3), pp. 291-301. https://www.revista.ccba.uady.mx/ojs/index.php/TSA/article/view/1935/980

Petropoulos, S.A., Levizou, E., Ntatsi, G., Fernandes, A., Petrotos, K., Akoumianakis, K., Barros, L. and Ferreira, I., 2017. Salinity effect on nutritional value, chemical composition and bioactive compounds content of Cichorium spinosum L. Food Chemistry 214, pp. 129-136. https://doi.org/10.1016/j.foodchem.2016.07.080

Pizarro, E.A., Hare, M., Mutimura, M. and Changjun, B., 2013. Brachiaria hybrids: potential, forage use and seed yield. Tropic. Grasslands - Forrajes Tropicales. 1(1), pp. 31-35. https://doi.org/10.17138/tgft(1)31-35.

Pratti-Daniel, J.L., Fernandes-Bernardes, T., Cabreira-Jobim, C., Schmidt, P. and Nussio, L.G., 2019. Production and utilization of silages in tropical areas with focus on Brazil. Grass and Forage Science 74(2), pp. 188-200. https://doi.org/10.1111/gfs.12417

Preeti, N.K., Kundu, S.S. and Sharma, A., 2018. Effect of saline water on rumen fermentation and serum profile in Murrah male calves. Indian Journal of Animal Research 52(1), pp. 65-71. https://doi.org/10.18805/ijar.v0iOF.7824

Robinson P.H., Grattan, S.R., Getachew, G., Grieve, C.M., Poss, J.A., Suarez, D.L. and Benes, S.E., 2004. Biomass accumulation and potential nutritive value of some forages irrigated with saline-sodic drainage water. Animal Feed Science and Technology 111, pp. 175-189. https://doi.org/10.1016/S0377-8401(03)00213-X

Rosa, P.R., Araujo, G.L., Turco, S.N., Moraes, S.S., Alves, J.N., Gois, G.C., Santos, D. and Campos, F. S., 2019. Ingestive behavior and physiological parameters of sindhi heifers receiving saline water. Journal of Agricultural Science 11 (4), pp. 381-394.

Salamanca, A., 2010. Suplementación de minerales en la producción bovina. Revista Electrónica de Veterinaria 11(9), pp. 1695-7504. https://www.redalyc.org/pdf/636/63615732008.pdf

Sánchez-Bernal, E.I., Santos-Jerónimo, S., Ortega-Escobar, H.M., López-Garrido, S.J. y Camacho-Escobar, M.A., 2020. Crecimiento de los pastos Cayman y Cobra en diferentes niveles salinos de NaCl, en invernadero. Terra Latinoamericana Número Especial 38(2), pp. 391-401. https://doi.org/10.28940/terra.v38i2.613

Segura, S.F., Echeverri, R.F., Patiño, A.L. y Mejía, A.G., 2007. Descripción y discusión acerca de los métodos de análisis de fibra y del valor nutricional de forrajes y alimentos para animales. Vitae 14(1), pp. 72-81. http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0121-40042007000100011

Serrano-Altamirano, V., Silva-Serna, M.M., Cano-García, M.A., Medina-García, G. y Ruiz-Corral, A., 2005. Estadísticas climatológicas básicas del Estado de Oaxaca (Periodo 1961-2003). INIFAP-SAGARPA. Libro técnico N. 4 Oaxaca, México, 272 pp.

Steel, G. D. and Torrie, J.H., 1988. Bioestadística: Principios. McGraw Hill. México. 622 pp.

Uzun, S., Uzun, O., Kaplan, M. and Ilbas, A.I., 2013. Response of bitter vetch lines to salt stress. Bulgarian Journal of Agricultural Science 19(5), pp. 1061-1067. http://www.agrojournal.org/19/05-23.pdf

Valtorta, E.S., Gallardo, M.R., Sbodio, A.O., Revelli, G.R., Arakaki, C., Leva, P.E., Gaggiotti, M. and Tercero, E.J., 2008. Water salinity effects on performance and rumen parameters of lactating grazing Holstein cows. International Journal of Biometeorology 52, pp. 239-247. https://doi.org/10.1007/s00484-007-0118-3

Van Soest, P.J., Robertson, J.B. and Lewis, B.A., 1991. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in ration to animal nutrition. Journal of Dairy Science 74(10), pp. 3583-3597. https://www.journalofdairyscience.org/article/S0022-0302(91)78551-2/pdf

Villa-Castorena, M., Catalán-Valencia, E.A., Inzunza-Ibarra, M.A. y Ulery, A. L., 2006. Absorción y traslocación de sodio y cloro en plantas de chile fertilizadas con nitrógeno y crecidas con estrés salino. Revista Fitotecnia México 29 (1), pp. 79-88. https://www.redalyc.org/pdf/610/61029111.pdf

Williams, B.A. 2000. 10 Cumulative Gas-Production Techniques for forage Evaluation. Pp. 189-211 In: Forage Evaluation in Ruminant Nutrition. https://books.google.com.mx/books?hl=es&lr=&id=78WIrCCJW-MC&oi=fnd&pg=PA189&dq=Forage+Evaluation+in+Ruminant+Nutrition.&ots=gkDrb4EOTv&sig=fb4vhPtJFunLSzym-2l68_ufaS0#v=onepage&q=Forage%20Evaluation%20in%20Ruminant%20Nutrition.&f=false

Worku-Daba, A., Sarwar-Qureshi, A. and Nekir-Nisaren, B., 2019. Evaluation of some Rhodes grass (Chloris gayana) genotypes for their salt tolerance, biomass yield and nutrient composition. Applied Sciences 9(143), pp. 1-12. https://doi.org/10.3390/app9010143




URN: http://www.revista.ccba.uady.mx/urn:ISSN:1870-0462-tsaes.v25i3.41244



Copyright (c) 2022 Serafín Jacobo López-Garrido, Silvia Santos-Jerónimo, Edgar Iván Sánchez-Bernal, Mónica Marcela Galicia Jiménez, Narciso Ysac Ávila-Serrano, Marco Antonio Camacho Escobar, Paulino Sánchez Santillán, David Hernández Sánchez

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.