Rodolfo Alejandro Martínez Soto, María Inés Yáñez Díaz, Israel Cantú Silva, Humberto González Rodríguez, José Guadalupe Marmolejo Moncicais


Background. The soil uses have been present since man domesticated the cultivated plants and, in the process, several changes in the soil’s physicochemical properties have been observed. Most of those changes have been detrimental to the soil’s productivity on a sustained basis. Thus, it is important to study and analyze the changes in soil’s physicochemical and hydraulic properties that get affections due to land conversion into different land-use systems. Objective. Assess the effect of different land-use systems on the physical, chemical, and hydrological properties of the soils in Northeast Mexico. Methodology. The study took place in a Chernozem soil in the Municipality of General Terán, Nuevo León, Mexico, and the land-use systems we investigated were: a citrus plantation, a grassland, an agricultural area, and the natural vegetation of the Tamaulipan Thornscrub site (MET) as a control treatment. Four composite soil samples were obtained from each site at two depths of 0-10 cm, and 10-30 cm, the chemical properties analyzed were pH and electrical conductivity (EC), and the physical properties consisted of Bulk density (BD), texture, total porosity (Tp), mechanical resistance to penetration (MRP) and field capacity (FC), permanent wilting point (PWP), available water (AW), initial infiltration (Ii), accumulated infiltration (Ai) and infiltration capacity (Ic). Results. The soil pH showed significant differences with depth (p=0.01), as well as the interaction of land-use depth (p=0.008), while electrical conductivity showed significant differences between land uses systems (p= 0.000); soil texture showed important differences in sand (p=0.003), silt (p=0.003) and clay content (p=0.006). There were significant differences between interaction of land-use soil depth, silt (p=0.003), and clay content (p=0.009). Soil hardness was significantly different between the diverse land-use systems (p=0.000). Concerning hydraulic properties, the water available in the place showed differences in land-use (p=0.001) and interaction land use-depth (p=0.006). Field capacity was also affected by land-use systems (p=0.000), as well as the interaction land use-depth (p=0.02); wilting point showed significant differences under distinct land use systems (p=0000), and in interaction of land use-depth (p=0003). Implications. More studies are needed in the short, medium and long term to monitor changes in physical, chemical, and water properties of soils under different land uses. Such information can be a guide in the proper management of these soils. Conclusion: From this study, it was possible to identify the negative impact that the different land-use systems have on the physical, chemical, and hydraulic properties of the soils under investigation. The hydraulic soil properties are the most affected. The information from this research can help for a better understanding of managing different land-use types in this Chernozem.


Citrus; Grassland; Tamaulipan Thornscrub; Agricultural; Chernozem; Infiltration.

Full Text:



Archer, N. A. L., Quinton, J.N. and Hess, T.M., 2002. Below–ground relationships of soil texture, roots and hydraulic conductivity in two–phase mosaic vegetation in South–east Spain. Journal of Arid Environments, 52, pp. 535–553. https://doi.org/10.1006/jare.2002.1011

Assi, A. T., Blake, J., Mohtar, R. H., and Braudeau, E., 2019. Soil aggregates a structure-based approach for quantifying the field capacity, permanent wilting point, and available water capacity. Irrigation Science, 37, pp. 511-522. https://doi.org/10.1007/s00271-019-00630-w

Bi, Y., Zou, H., and Zhu, C., 2014. Dynamic monitoring of soil bulk density and infiltration rate during coal mining in sandy land with different vegetation. International Journal of Coal Science & Technology, 1, pp. 198–206. https://doi.org/10.1007/s40789-014-0025-2

Blackburn, W. H., Pierson, F. B., Hanson, C. L., Thurow, T. L. and Hanson A. L., 1992. The spatial and temporal influence of vegetation on surface soil factors in semiarid rangelands. Transactions of the American Society of Agricultural Engineers, 35, pp. 479-486.

Cotler, H., Sotelo, E., Dominguez, J., Zorrilla, M., Cortina, S., and Quiñones, L., 2007. La conservación de suelos: un asunto de interés público. Gaceta Ecológica, Secretaría de Medio Ambiente y Recursos Naturales. Distrito Federal, México. 83, pp. 5-71. https://www.redalyc.org/articulo.oa?id=53908302

Dueñas-de la cruz A. C. 2019. Evaluación de la infiltración en plantaciones de bambú o caña de guayaquil (guadua angustifolia) en el distrito la Florida, San Miguel –Cajamarca. Repositorio Institutional Universidad Nacional Agraria La Molina. 300, pp. https://hdl.handle.net/20.500.12996/3902

El-Ramady, H. R., Alshaal, T. A., Amer, M., Domokos-Szabolcsy, É., Elhawat, N., Prokisch, J., and Fári, M., 2014. Soil quality and plant nutrition. Sustainable Agriculture Reviews, 14, pp. 45–447. https://doi.org/10.1007/978-3-319-06016-3_11

Fan, R., Zhang, X., Yang, X., Liang, A., Jia, S., and Chen, X., 2013. Effects of tillage management on infiltration and preferential flow in black soil, Northeast China. Chinese Geographical Science, 23, pp. 312–320. https://doi.org/10.1007/s11769-013-0606-9

Flores, D.L. and Alcalá, M. J. R., 2010. Manual de Procedimientos Analíticos. Laboratorio de física de suelos. Instituto de Geología. Departamento de edafología. Universidad Nacional Autónoma de México. 56, pp. https://www.geologia.unam.mx/igl/deptos/edafo/lfs/MANUAL%20DEL%20LABORATORIO%20DE%20FISICA%20DE%20SUELOS1.pdf

Gaitán, J. J. and Penón E. A. 2003. Efecto den la resistencia mecánica del suelo sobre la densidad de raíces finas de Eucalyptus globulus. Investigación Agraria. Sistemas y Recursos Forestales, 12(2), pp. 125-130.

Haruna, S.I.; Nkongolo, N.V.; Anderson, S.H.; Eivazi, F. and Zaibon, S., 2018. In situ infiltration as influenced by cover crop and tillage management. Journal of Soil and Water Conservation, 73(2), pp. 164–172. http://doi.org/10.2489/jswc.73.2.164

INEGI., 2017. Diccionario de datos edafológicos escala 1.250,000 versión 4. Instituto Nacional de Estadística y Geografía (México). 72, pp. https://www.inegi.org.mx/contenidos/productos/prod_serv/contenidos/espanol/bvinegi/productos/nueva_estr c/702825092023.pdf

INEGI., 2016. Conjunto de Datos Vectoriales de Uso de Suelo y Vegetación. Escala 1:250 000. Serie VI (Capa Union)', escala: 1:250 000. edición: 1. Instituto Nacional de Estadística y Geografía. Aguascalientes, México. http://www.conabio.gob.mx/informacion/gis/?vns=gis_root/usv/inegi/usv250s6gw

INEGI., 1986. síntesis geográfica del Estado de Nuevo León. Instituto Nacional de Estadística Geográfica e Informática. Nuevo León, México. 17, pp. https://www.inegi.org.mx/contenidos/productos/prod_serv/contenidos/espanol/bvinegi/productos/historicos/2104/702825220747/702825220747_1.pdf

INEGI., 2012. Aspectos generales del territorio mexicano. Recursos naturales. Edafología. https://www.inegi.org.mx/temas/edafologia

IUSS Grupo de Trabajo WRB., 2007. Base Referencial Mundial del Recurso Suelo. Primera actualización 2007. Informes sobre Recursos Mundiales de Suelos No. 103. FAO, Roma. https://www.fao.org/3/a0510s/a0510s.pdf

IUSS Working Group WRB., 2015. World Reference Base for Soil Resources 2014, update 2015 International soil classification system for naming soils and creating legends for soil maps. World Soil Resources Reports No. 106. FAO, Rome. https://www.fao.org/3/i3794en/I3794en.pdf

Jha, P., Mohapatra, K. P. and Dubey, S. K., 2010. Impact of land use on Physico-chemical and hydrological properties of ustifluvent soils in the riparian zone of river Yamuna, India. Agroforestry Systems, 80, pp. 437–445. https://doi.org/10.1007/s10457-010-9338-3

Karlin, M. S., Salazar, B. J., Cora, A., Sánchez, S., Arnulphi, S. and Accietto, R., 2019. Cambios en el uso del suelo: capacidad de infiltración en el centro de Córdoba (Argentina). Ciencia del Suelo (Argentina), 37(2), pp. 196-208. https://ojs.suelos.org.ar/index.php/cds/article/view/435

Khaledian, Y., Kiani, F., and Ebrahimi, S., 2012. The effect of land-use change on soil and water quality in northern Iran. Journal of Mountain Science, 9(6), pp. 798–816. https://doi.org/10.1007/s11629-012-2301-1

Luna, R. E. O., Cantu S. I., Gonzalez R. H., Marmolejo M. J., Yáñez D. M. I., Hernández, F. J., and Béjar, P. S. J., 2021. Effects of forest management on the physical and hydrological properties of an Umbrisol in the Sierra Madre Occidental. Revista Chapingo Serie Ciencias Forestales y del Ambiente, 27(1), pp, 19-32 https://doi.org/10.29298/rmcf.v13i72.1055

Ma?ki?, K., Peji?, B., Neši? L., Vasin, J. and Miji?, B., 2014. Chemical properties of chernozem influenced by irrigation. Research Journal of Agricultural Science, 46(2), pp. 139-146.

Marimon, J B. H., Hay, J. D. V., Oliveras, I., Jancoski, H., Umetsu, R. K., Feldpausch, T. R., Galbarit, R. D., Gloor, U. E., Phillips, L. O., and Marimon, B. S., 2019. Soil water-holding capacity and monodominance in Southern Amazon tropical forests. Plant and Soil, 450, pp. 65-79. https://doi.org/10.1007/s11104-019-04257-w

McPhee, J. E., Aird, P. L., Hardie, M. A., and Corkrey, S. R., 2015. The effect of controlled traffic on soil physical properties and tillage requirements for vegetable production. Soil and Tillage Research, 149, pp. 33–45. https://doi.org/10.1016/j.still.2014.12.018

Orduz, R. J. O. and Mateus, C. D.M., 2012 Generalidades de los cítricos y recomendaciones agronómicas para su cultivo en Colombia., Cap. 2. Cítricos: Cultivo, poscosecha e industrialización. Serie Lasallista Investigación y Ciencia, pp, 49-88. http://hdl.handle.net/10567/561

Osman, K. S., Jashimuddin, M., Haque, S. M. S., and Miah, S., 2013. Effect of shifting cultivation on soil physical and chemical properties in Bandarban hill district, Bangladesh. Journal of Forestry Research, 24(4), pp. 791–795. https://doi.org/10.1007/s11676-013-0368-3

Pavlovic P., Kosti? N., Karadži?, B., and Mitrovi? M., 2017. The Soils of Serbia, World Soils Book Series, Springer Netherlands, pp. 234. https://doi.org/10.1007/978-94-017-8660-7_7

Pishnamaz, A. F. Mosaddeghi, M. R. Davatgar, N. Chavoshi E. and Golsefidi. T. H., 2021. Effects of land-use and reducing conditions of paddy fields on soil quality and high energy moisture characteristic structural stability indices in North of Iran. Paddy and Water Environment, 19, pp. 433-451. https://doi.org/10.1007/s10333-021-00844-9

Qiao, J., Zhu, Y., Jia, X., Huang, L., and Shao, M. 2019. Pedotransfer functions for estimating the field capacity and permanent wilting point in the critical zone of the Loess Plateau, China. Journal of Soils and Sediments, 19, pp. 140-147. https://doi.org/10.1007/s11368-018-2036-x

Santra, P., Kumar, M., Kumawat, R. N., Painuli, D. K., Hati, K. M., Heuvelink, G. B. M., and Batjes, N. H., 2018. Pedotransfer functions to estimate soil water content at field capacity and permanent wilting point in hot Arid Western India. Journal of Earth System Science, 127, pp. 135. https://doi.org/10.1007/s12040-018-0937-0

SEMARNAT., 2002. Norma Oficial Mexicana NOM-021-SEMARNAT-2000. Secretaría de Medio Ambiente y Recursos Naturales. Diario Oficial, (Establece las especficaciones de fertilidad, salinidad y clasificación de suelos, estudio, muestreo y análisis), 85. http://www.profepa.gob.mx/innovaportal/file/3335/1/nom-021-semarnat-2000.pdf

Servicio Meteorológico Nacional, Normales Climatológicas por Estado, Comisión Nacional del Agua., 2010 https://smn.conagua.gob.mx/es/informacion-climatologica-por-estado?estado=nl

Shrestha, R. K., and Lal, R., 2008. Land-use impacts on physical properties of 28 years old reclaimed mine soils in Ohio. Plant and Soil, 306, pp. 249–260. https://doi.org/10.1007/s11104-008-9578-4

Velázquez, A., Mas, J. F., Díaz-Gallegos, J. R., Mayorga-Saucedo, R., Alcántara, P. C., Castro, R., Fernández, T., Bocco, G., Ezcurra, E., Palacio, J. L., 2002. Patrones y tasas de cambio de uso del suelo en México. Gaceta Ecológica, 62, pp. 21-37. https://www.redalyc.org/articulo.oa?id=53906202

Vittala, S. S., Reddy, G. R. C., Sooryanarayana, K. R., and Sudarshan, G., 2017. Soil infiltration test in hard rock areas—A case of study. In: Saha D., Marwaha S., Mukherjee A. (eds) Clean and Sustainable Groundwater in India. Pp 203-213. Springer Hydrogeology. Springer, Singapore. https://doi.org/10.1007/978-981-10-4552-3_14

Woerner, M., 1989. Método químico para el análisis de suelos calizos de zonas áridas y semiáridas. Facultad de Ciencias Forestales, Departamento Agroforestal, Universidad Autónoma de Nuevo León, Linares, Nuevo León, México. 103 pp.

Yáñez, D. M. I. 2017. Caracterización ecopedológica en Vertisoles bajo cuatro sistemas de uso de suelo. Tésis de Doctorado. Universidad Autónoma de Nuevo León, Linares, Nuevo León, México. 111, pp http://eprints.uanl.mx/id/eprint/16722

Yáñez, D. M. I., Cantú, S. I., Gonzalez, R. H., and Sanchez, C. L., 2018. Effects of land use change and seasonal variation in the hydrophysical properties in Vertisols in northeastern Mexico. Soil Use Management, 35(3), pp. 378-387. https://doi.org/10.1111/sum.12500

Yimer, F., Messing, I., Ledin, S., and Abdelkadir, A., 2008. Effects of different land use types on infiltration capacity in a catchment in the highlands of Ethiopia. Soil Use and Management, 24(4), pp. 344–349. https://doi.org/10.1111/j.1475-2743.2008.00182.x

Zhang, J., Lei, T., Qu, L., Chen, P., Gao, X., Chen, C., Yuan, L., Zhang, M., and Su, G. 2017. Method to measure soil matrix infiltration in forest soil. Journal of Hydrology, 552, pp. 241–248. https://doi.org/10.1016/j.jhydrol.2017.06.032

Zinck, A., 2005. Suelos, información y sociedad. Gaceta Ecológica, 76, pp. 7-22. https://www.redalyc.org/articulo.oa?id=53907603

URN: http://www.revista.ccba.uady.mx/urn:ISSN:1870-0462-tsaes.v25i3.41150

DOI: http://dx.doi.org/10.56369/tsaes.4115

Copyright (c) 2022 Rodolfo Alejandro Martínez Soto, María Inés Yáñez Díaz, Israel Cantú Silva, Humberto González Rodríguez, José Guadalupe Marmolejo Moncicais

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.