ADDITIVE EFFECT OF SILAGES MADE OF POULTRY LITTER, SWINE MANURE AND UREA MIXED WITH SUGAR CANE MOLASSES AND BAKERY BY-PRODUCT ON LAMB DIETS

Sergio Segundo González Muñoz, Ignacio Arturo Domínguez Vara, José Luis Bórquez Gastelum, Juan Manuel Pinos Rodríguez, Jacinto Efrén Ramírez Bribiesca, Daniel Trujillo Gutiérrez

Abstract


Background: The use of silages from non-conventional sources of nitrogen and soluble carbohydrates in feeding lambs is controversial in terms of nutrient supply; due to the minimum number of studies reported to date of in vitro evaluations that allow measuring its nutritional value in ruminants. Objective: To evaluate the additive effect and fermentation potential of silages plus concentrates in diets for lambs on the in vitro gas production kinetics. Methodology: Six diets (silage + concentrate) were evaluated in a factorial arrangement of 3 N sources (dried poultry litter, fresh swine manure, agricultural urea) × 2 carbohydrate sources (sugar cane molasses, bakery by-product). The diets contained: a) silage (400 g/kg DM) and b) concentrates (600 g/kg DM) based on soybean meal, ground corn, wheat bran, corn stover, fish meal, and vitamin and mineral premix. Average gas production data were analyzed with PROC MIXED and the gas production curves were fitted into the Exponential Logistic model with PROC NLMIXED. Results: The PO+MC (151.87 mL/gas MS) and CF+MC (153.12 mL/gas MS) treatments had higher average gas production during incubation. An additive effect was observed on the maximum asymptote of gas production in the CF+MC (+ 4.26%) and PO+MC (+ 3.75%) diets (P<0.01). Diets based on PO or CF combined with MC and SPP had higher IVDMD, IVOMD, and IVNDFD than the control treatment (UR). Implications: The inclusion in diets for growing lambs of corn stover silage based on rapidly fermentable carbohydrate sources with non-protein nitrogen from pig and poultry excreta in diets for growing lambs has associative effects on nutrient degradability and its fermentation potential in small ruminant feed. Conclusions: The PO+MC treatment has a higher potential for gas production due to the associative effect of its components. 

Keywords


livestock excreta; in vitro gas production; non-protein nitrogen; agro-industrial wastes

Full Text:

PDF

References


AOAC., 1997. Official Methods of Analysis (16th ed), Vol. 1. Arlington, Virginia, USA: Association of Official Analytical Chemists.

Bolan, N.S., Szogi, A.A., Chuasavathi, T., Seshadri, B., Rothrock, M.J. and Panneerselvam, P., 2010. Uses and management of poultry litter. World's Poultry Science Journal, 66, pp. 673-698. https://doi.org/10.1017/S0043933910000656

Bórquez, J.L., González-Muñoz, S.S., Pinos-Rodríguez, J.M., Domínguez, I., Bárcena, J.R., Mendoza, G.D., Cobos, M.A. and Bueno, G., 2009. Feeding value of ensiling fresh cattle manure with molasses or bakery byproducts in lambs. Livestock Science, 122, pp. 276-280. https://doi.org/10.1016/j.livsci.2008.09.009

Bórquez-Gastelum, J.L., Trujillo-Gutiérrez, D., Domínguez-Vara, I.A., Pinos-Rodríguez, J.M. and Cobos-Peralta, M.A., 2018. Yield performance of growing lambs fed silages with poultry litter, pig excreta and urea with molasses cane or a bakery by-product, Agrociencia, 52, pp. 333-346.

Chaudhry, S.M., Naseer, Z. and Alkraidees, M.S., 1997. Nutritive evaluation of poultry waste and Sudex grass silage for sheep. Asian-Australasian. Journal of Animal Science, 10 pp. 79-85. https://doi.org/10.5713/ajas.1997.79

Cone, J.W., Van Gelder, A.H., Visscher, G.J.W. and Oudshoorn, L., 1996. Influence of rumen fluid and substrate concentration on fermentation kinetics measured with a fully automated time related gas production apparatus. Animal Feed Science and Technology, 61, pp. 113-128. https://doi.org/10.1016/0377-8401(96)00950-9

de Blas, A., Mateos, G.G. and García-Rebollar, P., 2010. Tablas FEDNA de composición y valor nutritivo de alimentos para la fabricación de piensos compuestos. 3ra ed. Madrid, España: Fundación Española para el Desarrollo de la Nutrición Animal.

Dhanoa, M.S., Lopez, S., Dijkstra, J., Davies, D.R., Sanderson, R., Williams, B.A., Sileshi, Z. and France, J., 2000. Estimating the extent of degradation of ruminant feeds from a description of their gas production profiles observed in vitro: comparison of models. British Journal of Nutrition, 83, pp1 31-142. https://doi.org/10.1017/S0007114500000179

Dryhurst, N. and Wood, C.D., 1998. The effect of nitrogen source and concentration on in vitro gas production using rumen micro-organisms. Animal Feed Science and Technology, 71, pp. 131-143. https://doi.org/10.1016/S0377-8401(97)00124-7

Figueroa, V., Sánchez, M. 1997. Tratamiento y utilización de residuos de origen animal, pesquero y alimenticio en la alimentación animal. Roma, Italia: FAO.

Fija?kowska, M., Pysera, B., Lipi?ski, K. and Strusi?ska, D., 2015. Changes of nitrogen compounds during ensiling of high protein herbages – a review. Annals of Animal Science, 15, pp. 289–305. https://doi.org/10.1515/aoas-2015-0008

France, J., Dijkstra, J., Dhanoa, M.S., Lopez, S. and Bannink, A., 2000. Estimating the extent of degradation of ruminant feeds from a description of their gas production profiles observed in vitro: derivation of models and other mathematical consideration. British Journal of Nutrition, 83, pp. 143-150. https://doi.org/10.1017/S0007114500000180

France, J. and Kebreab, E., 2008. Mathematical modelling in animal nutrition. Oxfordshire, UK: CAB International.

Gaccione, P., 1998. Nonlinear mixed effects models, a tool for analyzing repeated-measurements. A brief tutorial using SAS software. In: L. Jansen, ed. SUGI 23 1998. Proceedings of the Twenty Third Annual, Nashville, TN, USA: SAS® Users Group International. pp. 1-7.

Gandarillas, M., Keim, J.P. and Gapp, E.M., 2021. Associative effects between forages and concentrates on in vitro fermentation of working equine diets. Animals (Basel), 11(8), 2212. https://doi.org/10.3390/ani11082212

Huhtanen, P., Seppala, A., Ots, M., Ahvenjarvi, S. and Rinne, M., 2008. In vitro gas production profiles to estimate extent and effective first-order rate of neutral detergent fiber digestion in the rumen. Journal of Animal Science, 86, pp. 651-659. https://doi.org/10.2527/jas.2007-0246

Huisden, C.M., Adesogan, A.T., Kim, S.C. and Ososanya, T., 2009. Effect of applying molasses or inoculants containing homofermentative or heterofermentative bacteria at two rates on the fermentation and aerobic stability of corn silage. Journal of Dairy Science, 92, pp. 690-697. https://doi.org/10.3168/jds.2008-1546

Jayathilakan, H., Sultana, K., Radhakrishna, K. and Bawa, A.S., 2012. Utilization of byproducts and waste materials from meat, poultry and fish processing industries: a review. Journal of Food Science and Technology, 49, pp. 278–293. https://doi.org/10.1007/s13197-011-0290-7

Keady, T.W.J., 1996. A review of the effects of molasses treatment of unwilted grass at ensiling on silage fermentation, digestibility and intake, and on animal performance. Irish Journal of Agricultural and Food Research, pp. 141-150. http://www.jstor.org/stable/25562278. Accessed 13 Jun. 2022.

Littell, R.C., Milliken, G.A., Stroup, W.W., Wolfinger, R.D. and Schabenberger, O., 2006. SAS® for mixed models, 2nd ed. Cary, NC, USA: SAS Institute Inc.

López-Garrido, S.J., Cobos, P.M.A., Mendoza, M.D.D. and Camacho-Escobar, M.A., 2014. The effect of commercial additive (Toxic-Chec) and propionic acid on the fermentation and aerobic stability of silage with pig excreta. American Journal of Experimental Agriculture, 4, pp. 1820-1831. https://doi.org/10.9734/AJEA/2014/12035

Manyi-Loh, C.E., Mamphweli S.N., Meyer, E.L., Makaka, G., Simon, M. and Okoh, A.I., 2016. An overview of control of bacterial pathogens on cattle manure. International Journal of Environmental Research and Public Health, 13, pp. 843. https://doi.org/10.3390/ijerph13090843

Mejía-Uribe, L.A., Borquez, J.L., Salem, A.Z.M., Domínguez-Vara, I.A. and Gonzalez-Ronquillo, M., 2013. Short communication. Effects of adding different protein and carbohydrates sources on chemical composition and in vitro gas production of corn stover silage. Spanish Journal of Agricultural Research, 11, pp. 427-430. https://doi.org/10.5424/sjar/2013112-3547

Menke, K.H., Raab, L., Salewski, A., Steingass, H., Fritz, D. and Schneider, W., 1979. The estimation of the digestibility and metabolizable energy content of ruminant feeding stuffs from the gas production when they are incubated with rumen liquor in vitro. The Journal of Agricultural Science, Cambridge, 93, pp. 217-222. https://doi.org/10.1017/S0021859600086305

Mordenti, A.L., Giaretta, E., Campidonico, L., Parazza, P. and Formigoni, A., 2021. A review regarding the use of molasses in animal nutrition. Animals, 11(1), 115. https://doi.org/doi.org/10.3390/ani11010115

Nousiainen, J., Ahvenjärvi, S., Rinne, M., Hellämäki, M. and Huhtanen, P., 2004. Prediction of indigestible cell wall fraction of grass silage by near infrared reflectance spectroscopy. Animal Feed Science and Technology, 115, pp. 295–311. https://doi.org/10.1016/j.anifeedsci.2004.03.004

NRC (National Research Council)., 2007. Nutrient requirements of small ruminants (sheep, goats, cervids and new world camelids). Washington, DC: National Academy Press.

Olivo, P.M., dos Santos, G.T., Ítavo, L.C.V., da Silva Junior, R.C., Leal, E.S. and do Prado, R.M., 2017. Assessing the nutritional value of agroindustrial co-products and feed through chemical composition, in vitro digestibility, and gas production technique. Acta Scientiarum, 39, pp. 289-295. https://doi.org/10.4025/actascianimsci.v39i3.34024

Phesatcha, K. and Wanapat, M., 2016. Improvement of nutritive value and in vitro ruminal fermentation of Leucaena silage by molasses and urea supplementation. Asian-Australasian Journal of Animal Science, 29, pp. 1136-1144. https://doi.org/10.5713/ajas.15.0591

Purwin, C., Pysera, B., Tokarczyk, M., Sederevicius, A., Savickis, S. and Traidarait?, A., 2009. Production results of dairy cows fed grass and alfalfa silage with a different degree of wilting. Veterinarija ir Zootechnika. Med. Zootec, 46, pp. 60–66.

Rezende, Vilela de, A., Rabelo S.C.H., Sampaio L. de M., Härter, C.J., Florentino, L.A., Paula, D.W. and Braga, T.C., 2016. Ensiling a dry bakery by-product: effect of hydration using acid whey or water associated or not at urea. Revista Brasileira de Saúde e Produção Animal. https://doi.org/10.1590/S1519-99402016000400007

Rosales, M., Gill, M., Wood, C.D. and Speedy, A.W., 1998., Associative effects in vitro of mixtures of tropical fodder trees. BSAP Occasional Publication, 22, pp. 175-177. https://doi.org/10.1017/S0263967X0003250X

Saeed, A.H. and Salam, A.I. 2013., Current limitations and challenges with lactic acid bacteria: a review. Food and Nutrition Sciences, 4, pp. 73-87. https://doi.org/10.4236/fns.2013.411A010

Salem, A.Z.M., Zhou, C.S., Tan, Z.L., Mellado, M., Salazar, M.C., Elghandopur, M.M.M.Y. and Odongo, N.E., 2013. In vitro ruminal gas production kinetics of four fodder trees ensiled with or without molasses and urea. Journal of Integrative Agriculture, 12, pp. 1234-1242. https://doi.org/10.1016/S2095-3119(13)60438-4

Sánchez-Meraz, J.A., González-Muñoz, S.S., Pinos-Rodríguez, J.M., López-Hernández, Y. and Miranda, L.A., 2014. Effects of slow-release urea on in vitro degradation of forages. Journal of Animal and Plant Science, 24 pp. 1840-1843. WOS:000347168800037

SAS Institute Inc., 2004. SAS/STAT® 9.1 User’s Guide. Cary, NC, USA: SAS Institute Inc.

Serna-Saldivar, S.O., 2010. Cereal Grains: properties, processing, and nutritional attributes. Boca Raton, FL, USA: CRC Press, Taylor & Francis Group, LLC.

Shaver, R.D., Erdman, R.A. and Vadersall, J.H., 1984. Effects of silage pH on voluntary intake of corn silage. Journal of Dairy Science, 67, pp. 2045-2049. https://doi.org/10.3168/jds.S0022-0302(84)81542-8

Serrano-García, E., Castrejón-Pineda, F., Herradora-Lozano, M.A., Ramírez-pérez, A.H., Angeles-Campos, S. and Buntinx, S.E., 2008. Fungal survival in ensiled swine faeces. Bioresource Technology, 99, pp. 3850-3854. https://doi.org/10.1016/j.biortech.2007.06.050

Schofield, P. and Pell, A.N., 1995. Measurement and kinetic analysis of the neutral detergent-soluble carbohydrate fraction of legumes and grasses. Journal of Animal Science, 73, pp. 3455-3463. https://doi.org/10.2527/1995.73113455x

Seok, J.S., Kim, Y.I., Choi, D.Y. and Kwak, W.S., 2016. Effect of feeding a by-product feed-based silage on nutrients intake, apparent digestibility, and nitrogen balance in sheep. Journal of Animal Science and Technology, 58, pp. 1-5. https://doi.org/10.1186/s40781-016-0091-7

Tamminga, S., Van Vuuren, A.M., Van der Koelen, C.J., Ketelaar, R.S. and Van der Togt, P.L., 1990. Ruminal behavior of structural carbohydrates, non-structural carbohydrates and crude protein from concentrate ingredients in dairy cows. Netherlands Journal of Agricultural Science, 38, pp. 513-526. https://doi.org/10.18174/njas.v38i3B.16575

Tedeschi, L.O., Fox, D.G. and Russell, J.B., 2000. Accounting for the effects of a ruminal nitrogen deficiency within the structure of the Cornell net carbohydrate and protein system. Journal of Animal Science, 78, pp. 1648-1658. https://doi.org/10.2527/2000.7861648x

Theodorou, M.K., Williams, B.A., Dhanoa, M.S., McAllan, A.B. and France, J., 1994. A simple gas production method using a pressure transducer to determine the fermentation kinetics of ruminant feeds. Animal Feed Science and Technology, 48, pp. 185-197. https://doi.org/10.1016/0377-8401(94)90171-6

Trujillo, G.D., Bórquez, G.J.L., Pinos-Rodríguez, J.M., Domínguez-Vara, I.A. and Rojo, R.R., 2014. Nutritive value of ensiled pig excreta, poultry litter or urea with molasses or bakery by-products in diets for lambs. South African Journal of Animal Science, 44, 114–122. https://doi.org/10.4314/sajas.v44i2.3

Van Soest, P.J., 1994. Nutritional Ecology of the Ruminant, Cornell, USA: Cornell University.

Van Soest, P.J., Robertson, J.B. and Lewis, B.A., 1991. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science, 74, pp. 3583-3597. https://doi.org/10.3168/jds.S0022-0302(91)78551-2

Wang, M., Tang, S.X. and Tan, Z.L., 2011. Modeling in vitro gas production kinetics: derivation of Logistic–Exponential (LE) equations and comparison of models. Animal Feed Science and Technology, 165, pp. 137-150. https://doi.org/10.1016/j.anifeedsci.2010.09.016

Wood, B.J., 1998. Microbiology of fermented foods. London, UK: Thomson Science.




URN: http://www.revista.ccba.uady.mx/urn:ISSN:1870-0462-tsaes.v25i3.39384

DOI: http://dx.doi.org/10.56369/tsaes.3938



Copyright (c) 2022 Juan Manuel Pinos Rodríguez, José Luis Bórquez Gastelum, Jacinto Efrén Ramírez Bribiesca, Sergio Segundo González Muñoz, Ignacio Arturo Domínguez Vara, Daniel Trujillo Gutiérrez

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.