EVALUATION OF THE CARBON FOOTPRINT OF THE COFFEE PRODUCTION CHAIN: CASE STUDY OF THE FINCA TRIUNFO VERDE, CHIAPAS, MÉXICO

Adán Villa-Herrera, Martin Alejandro Bolaños-Gonzalez, Fernando Paz-Pellat, Jose Manuel Salvador-Castillo, Luz María Ramirez-Armas, Carolina Villagomez-Jimenez

Abstract


Background. The carbon footprint (CF) quantifies the total greenhouse gas (GHG) emissions generated by human activities. Reducing the CF of agricultural products is essential for mitigating global warming. Objective. To quantify the CF in organic shade-grown coffee production in two modalities: green coffee for export and ground, packaged coffee for the local market at Finca Triunfo Verde S.C., Chiapas, Mexico. Methodology. During the 2023–2024 production cycle, 458 plots across 32 communities in eight municipalities of the Sierra Madre de Chiapas were evaluated. GHG emissions were estimated according to IPCC guidelines and the PAS-2050 standard. Results. The average total CF was 0.909 kg CO₂e kg⁻¹ for export green coffee and 1.014 kg CO₂e kg⁻¹ for locally marketed coffee. The wet processing phase had the highest impact in both cases, primarily due to methane emissions from pulp decomposition (0.289 kg CO2e kg⁻¹) and nitrous oxide emissions from wastewater (0.266 kg CO2e kg⁻¹). Transportation contributed 0.238 kg CO2e kg⁻¹ for export coffee and 0.211 kg CO2e kg⁻¹ for local market coffee due to fuel consumption. Together, these activities accounted for 87.18% and 75.54% of the total CF for export and local market coffee, respectively. Implications. Optimizing coffee by-product management, adopting clean energy, and improving transportation efficiency could significantly reduce CF. Conclusion. Wet processing was the most significant impactful phase in both production modalities. Pulp decomposition contributed 31.77% to the CF of export coffee and 28.48% to local market coffee. Wastewater emissions represented 29.28% and 26.25%, respectively, while transportation represented 26.13% and 20.81% of the CF for export and local market coffee.

Keywords


Coffea arabica; agroforestry systems; greenhouse gases; sustainable production.

Full Text:

PDF

References


Aguilar, R., 2012. Impacto socioeconómico y ambiental de la certificación orgánica-comercio justo de café (Coffea arabica) en la región Frailesca, Chiapas, México. Tesis Magister Scientiae en Socioeconomía Ambiental. CATIE, Turrialba, Costa Rica.

Albornoz, O.A.C., 2017. Huella de Carbono del café (Coffea arabica) en Empresa Asociativa Campesina Aruco en Copán, Honduras para el año 2016-2017. Tesis. Escuela Agrícola Panamericana, Zamorano Honduras.

APHA, AWWA and WEF., 2005. Standard methods for the examination of water and wastewater. Health Association, 21th ed., Washington D.C., USA. 1200 pp.

Arellano, C. and Hernández, C., 2023. Carbon footprint and carbon storing capacity of arabica coffee plantations of Central America: A review. Coffee Science, 18, p.e182072. https://doi.org/10.25186/.v18i.2072

Arias, H.J.J., Riaño, H.N.M., Riaño, B.A.M., Ariza, C.W., Posada, S.H.J., Valenzuela, A.J., Vega, C.M.A., Murgueitio, C.Y.P. and Castro, C.J.F., 2018. Determinación de la huella de carbono en el sistema de producción de café pergamino seco de cuatro municipios del sur del departamento del Huila (Colombia). Revista de Investigación Agraria y Ambiental, 9(2), pp.109-120. https://doi.org/10.22490/21456453.2283

Balma, M.C., 2018. Comparación de las emisiones de gases efecto invernadero para dos tecnologías de tratamiento de residuos de pulpa de café en Costa Rica. Universidad Nacional de Costa Rica, Facultad de las Ciencias de la Tierra y el Mar. Licenciatura en Gestión Ambiental con énfasis en Ingeniería Sanitaria. http://hdl.handle.net/11056/14192

Climate Transparency, 2022. Climate transparency report. G20 response to the energy crisis: critical for 1.5 °C. https://www.climate-transparency.org/wp-content/uploads/2022/10/CT2022-Summary-report.pdf

Crippa, M., Solazzo, E., Guizzardi, D., Tubiello, F.N. and Leip, A., 2021. Food systems are responsible for a third of global anthropogenic GHG emissions. Nature Food, 2(3), pp.198-209. https://doi.org/10.1038/s43016-021-00225-9

Enríquez, A., González, E., Hara, S. and Laciau, P., 2020. La huella ambiental en las actividades agropecuarias, explorando el balance de gases de efecto invernadero en norpatagonia. Presencia, 31(74), pp.28-32. https://ri.conicet.gov.ar/handle/11336/140738

Fuentes, N. 2019. Evaluación de sistemas de tratamiento de aguas residuales en beneficios de café en Costa Rica. Universidad Nacional de Costa Rica, Facultad de las Ciencias de la Tierra y el Mar. Licenciatura en Gestión Ambiental con énfasis en Ingeniería Sanitaria. http://hdl.handle.net/11056/18152

Giraldi-Díaz, M.R., De Medina-Salas, L., Castillo-González, E. and León-Lira, R., 2018. Environmental impact associated with the supply chain and production of grounding and roasting coffee through life cycle analysis. Sustainability, 10(12), pp. 4598. https://doi.org/10.3390/su10124598

Guerra, A.L., 2007. Construcción de la huella de carbono y logro de carbono neutralidad para el Centro Agronómico Tropical de Investigación y Enseñanza (CATIE). Tesis sometida a consideración de la Escuela de Posgrado, Programa de Educación para el Desarrollo y la Conservación del Centro Agronómico Tropical de Investigación y Enseñanza como requisito para optar por al grado de: Magister Scientiae en Socioeconomía Ambiental. Costa Rica. https://repositorio.catie.ac.cr/handle/11554/4681

Hernández, J.J.A., Becerra, A.M.R., Camacho, W.A., Suárez, H.J.P., Andrade, J.V., Cano, M.A.V., Cortés, Y.P.M. and Chávez, J.F.C., 2018. Determinación de la huella de carbono en el sistema de producción de café pergamino seco de cuatro municipios del sur del departamento de Huila (Colombia). Revista de Investigación Agraria y Ambiental, 9(2), pp.109-120. https://doi.org/10.22490/21456453.2283

INEGI. 2010. Prontuario de información geográfica municipal de los Estados Unidos Mexicanos. http://www.inegi.org.mx/sistemas/mexicocifras/default.aspx?ent=07

Intergovernmental Panel on Climate Change (IPCC). 2006. Agriculture, forestry and other land use IPCC Guidelines for National Greenhouse Gas Inventories. H. S. Eggleston, L. Buendia, K. Miwa, T. Ngara, and K. Tanabe (eds.). Prepared by the National Greenhouse Gas Inventories Programme. Institute for Global Environmental Strategies. Hayama, Japan. https://www.ipcc-nggip.iges.or.jp/public/2006gl/

Intergovernmental Panel on Climate Change (IPCC)., 2019. Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories. Task Force on National Greenhouse Gas Inventories (TFI). 49th session of the IPCC, 8 – 12 May 2019, Kyoto, Japan. https://www.ipcc.ch/report/2019-refinement-to-the-2006-ipcc-guidelines-for-national-greenhouse-gas-inventories/

Intergovernmental Panel on Climate Change (IPCC), 2022. Climate Change., 2022. Mitigation of Climate Change. Working group III contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. https://www.ipcc.ch/report/ar6/wg3/

Jaisawal, B. and Agrawal, M., 2019. Carbon footprints of agriculture sector. En S. Muthu (Ed.), Carbon Footprints. Enviromental footprints and eco-designs of products and processes. Springer, pp.81-99. https://doi.org/10.1007/978-981-13-7916-1_4

Lara, D.J.M., Marceleño, F.S.M.L. and Nagera, G.A., 2024. Café y Sostenibilidad: estudio de la Huella de Carbono en la producción y consumo de café. Estudios Sociales. Revista de Alimentación Contemporánea y Desarrollo Regional, 34(63), pp. 22. https://doi.org/10.24836/es.v34i63.1393

Liu, C., Plaza, B.D., Coulter, J.A., Kutcher, H.R., Beckie, H.J., Wang, L., Floc’h, J.B., Hamel, C., Siddique, K.H.M., Li, L. and Gan, Y., 2022. Diversifying crop rotations enhances agroecosystem services and resilience. In Advances in Agronomy, 173 pp. 299–335. https://doi.org/10.1016/bs.agron.2022.02.007

Killian, B., Rivera, L., Soto, M. and Navichoc, D., 2013. Carbon footprint across the coffee supply chain: the case of Costa Rican coffee. Journal of Agricultural Science and Technology, 3, pp. 151-170. https://api.semanticscholar.org/CorpusID:26569235

Nab, C. and Maslin, M., 2020. Life cycle assessment synthesis of the carbon footprint of Arabica coffee: Case study of Brazil and Vietnam conventional and sustainable coffee production and export to the United Kingdom. Geo Geography and Environment, 7, pp.1-19. https://doi.org/10.1002/geo2.96

Noponen, M.R.A., Edwards, J.G., Haggar, J.P., Soto, G., Attarzadeh, N. and Healey, J.T., 2012. Greenhouse gas emissions in coffee grown with differing input levels under conventional and organic management. Agriculture, Ecosystems and Environment, 151, pp. 6-15. https://doi.org/10.1016/j.agee.2012.01.019

Organización Internacional del Café (OIC)., 2021. Datos históricos de producción de café. https://www.ico.org/es/what-we-do/world-coffee-statistics-database/

Ortíz G,D., Vaast, P., Oelofse, M., Neergaard, A., Albrecht, A. and Rosenstock, T.S., 2017. Farm-scale greenhose gas balances, hotspots, and uncertainties in smallholder crop-livestock systems in Central Kenya. Agricultura Ecosystems & Environment, 248, pp.58-70. https://doi.org/10.1016/j.agee.2017.06.002

PAS-2050., 2008. Guide to PAS 2050. How to assess the carbon footprint of goods and services. CARBON TRUST, Department for Environment Food and Rural Affairs and British Standards. http://shop.bsigroup.com/en/Browse-by-Secctor/Energy-- Utilities/PAS-2050/

PAS-2050., 2011. Specification for the assessment of the life cycle greenhouse gas emissions of goods and services. CARBON TRUST. Department for Environment Food and Rural Affairs. Department of Energy and Climate Change and British Standards. http://www.bsigroup.com/en/sectorsandservices/Forms/PAS-2050

Pathak, H., 2013. Greenhouse gas mitigation in Indian agriculture. Annals of Agricultural Research, 34(2), pp. 99-105. https://epubs.icar.org.in/index.php/AAR/article/view/37514/16812

Pramulya, R., Bantacut, T., Noor, E. and Yani, M., 2019. Carbon footprint calculation for Gayo Arabica Coffee primer processing. International Journal of Scientific & Technology Research, 8(12), pp.2934-2938. https://doi.org/10.54319/jjbs/160218

Rees, R., Flack, S., Maxwell, K., and Mistry, A., 2014. Air: Greenhouse gases from agriculture. In: Encyclopedia of Agriculture and Food Systems, 1, pp. 293-304. https://doi.org/10.1016/B978-0-444-52512-3.00088-7

Salinas, R., 2009. Caracterización y diagnóstico en tramos de los ríos Prusia, El Plan,Cuxtepeques, Negrito y el Rosario en la Reserva de la Biósfera "El Triunfo" (REBITRI) y su zona de influencia, Chiapas, México. pp. 94. https://biblioteca.ecosur.mx/cgi-bin/koha/opac-detail.pl?biblionumber=42902

Schneider, H, and Samaniego, J., 2010. La huella del carbono en la producción, distribución y consumo de bienes y servicios. LC/W.298. Copyright © Naciones Unidas. Todos los derechos reservados. Impreso en Naciones Unidas, Santiago de Chile. pp. 46.

SEMARNAP., 1998. Programa de manejo de la Reserva de la Biosfera el Triunfo. pp.109.

Segura, M.A. and Andrade, H.J., 2012. Huella de carbono en cadenas productivas de café (Coffea Arabica l.) con diferentes estándares de certificación en Costa Rica. Luna Azul 35, pp. 60-77. http://www.scielo.org.co/pdf/luaz/n35/n35a05.pdf

Skiba, U. and Rees, R., 2014. Nitrous oxide, climate change and agriculture. Cab Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources, 9, pp. 7 https://doi.org/10.1079/PAVSNNR20149010

Sistema de Información Agroalimentaria y Pesca-Secretaría de Agricultura, Ganadería, Pesca y Alimentación. SIACON-SAGARPA., 2024. https://nube.siap.gob.mx/avance_agricola/

Soto, L. and Aguirre, C., 2015. Carbon Stocks in Organic Coffee Systems in Chiapas, México. Journal of Agricultural Science, 7(1), pp. 117-128. http://doi.org/10.5539/jas.v7n1p117

Trikilidou, E., Samiotis, G., Tsikritzis, L. and Amanatidou, E., 2020. Performance of Semi-Micro-Kjeldahl Nitrogen Method – uncertainty and nitrate interference. International Journal of Environmental Analytical Chemistry, 102(18), pp. 1-11. https://doi.org/10.1080/03067319.2020.1807967

Trinh, L.T.K., Hu, A.H., Lan, Y.C. and Chen, Z.H., 2020. Comparative life cycle assessment for conventional and organic coffee cultivation in Vietnam. International Journal of Environmental Science and Technology. 17, pp. 1307-1324. https://doi.org/10.1007/s13762-019-02539-5

van Rikxoort, H., Schroth, G., Läderach, P. and Rodríguez-Sánchez, B., 2014. Carbon footprints and carbon stocks reveal climate-friendly coffee production. Agronomy for Sustainable Development. 34(4), pp. 887-897. https://doi.org/10.1007/s13593-014-0223-8

Wright, L., Kemp, S. and Williams, I., 2011. ‘Carbon footprinting’: towards a universally accepted definition. Carbon Management, 2(1), pp. 61 - 72. https://doi.org/10.4155/cmt.10.39




URN: http://www.revista.ccba.uady.mx/urn:ISSN:1870-0462-tsaes.v28i1.60436

DOI: http://dx.doi.org/10.56369/tsaes.6043



Copyright (c) 2025 Adán Villa, Martin Alejandro Bolaños, Fernando Paz, Jose Manuel Castillo, Luz María Ramírez, Carolina Villagomez

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.