ALTERNATIVES FOR THE MANAGEMENT OF COFFEE CORKY-ROOT DISEASE: SEARCH FOR TOLERANCE AND ANTAGONISTIC FUNGI

Dinorah Lima-Rivera, Alejandro Salinas-Castro, Gerardo Gutierrez-García, Andrés Rivera-Fernández, Carlos Cerdán, Luc Villain, Damaris Desgarennes, Daniel López-Lima

Abstract


Background: The root-knot nematode Meloidogyne paranaensis is one of the main phytosanitary problems in coffee crops, as it causes premature death of plants. In localities in central Veracruz, Coffea canephora plants tolerant to this nematode have been detected, which can be used as rootstocks in infested areas. Objective: To select plants that show tolerance in the field and to isolate and identify fungi associated with the rhizosphere of these coffee plants. Methodology: Plants infested with nematodes were selected and root samples were taken to quantify population density and corroborate the species. Fungi were isolated and identified from the rhizosphere soil. Five fungi were selected to observe the in vitro infection process on M. paranaensis eggs. Results: 18 plants that showed tolerance to M. paranaensis were selected. Twenty strains of fungi belonging to 7 genera and 16 species were obtained. The genera Penicillium and Fusarium were the most frequent. Clonostachys rogersoniana was the only fungus that showed parasitism against M. paranaensis eggs in vitro. Implications: The 18 selected plants show tolerance in the field, and it is necessary to conduct tests with controlled inoculations of M. paranaensis with clones and progeny. Tests on the nematophagous capacity of C. rogersoniana should continue. Conclusion: In the study area there are plants with tolerance to M. paranaensis and they can be used as rootstocks. The fungus C. rogersoniana is capable of infesting M. paranaensis eggs and is a potential biological control agent for this nematode.

Keywords


Meloidogyne paranaensis; root-knot nematode; tolerant plants; nematophagous fungi; soil borne diseases.

Full Text:

PDF

References


Alcasio-Rangel, S., Torres-López, J. and López-Buenfil, J.A., 2017. Detecciones del nematodo agallador Meloidogyne paranaensis en Puebla y Veracruz, México. Revista Mexicana de Fitopatología, 35, pp. S65.

Ahmad, I., Jiménez-Gasco, M. d. M., Luthe, D.S. and Barbercheck, M.E. 2022. Endophytic Metarhizium robertsii suppresses the phytopathogen, Cochliobolus heterostrophus and modulates maize defenses. PLoS ONE, 17, pp. e0272944. https://doi.org/10.1371/journal.pone.0272944

Carneiro, R.M.D.G., Tigano, M., Randig, O., Almeida, M.R. and Sarah, J.L., 2004. Identification and genetic diversity of Meloidogyne spp. (Tylenchida: Meloidogynidae) on coffee from Brazil, Central America, and Hawaii. Nematology, 6, pp. 287-298. https://doi.org/10.1163/1568541041217942

Cerda-Ocaranza, M.G., Salgado-Mora, M.G., Aguirre-Cadena, J.F., and Chilel-Pérez, N.D. 2023. Respuesta

del café robusta (Coffea canephora) Pierre ex A. Froehner a diferentes manejos de sombra y fertilización, en el sur de Chiapas, México. Ciencia Latina Revista Científica Multidisciplinar, 7(1), 5547-5565. https://doi.org/10.37811/cl_rcm.v7i1.4870

Carrión, G., López-Lima, D. and Durán-Barradas, Z., 2021. Hongos entomopatógenos, micoparásitos y nematófagos. In: G. Mata and D. Salmones eds. Técnicas de aislamiento, cultivo y conservación de cepas de hongos en el laboratorio. Xalapa, México: Instituto de Ecología, A.C. pp. 73-86.

Chort, I. and Berk, Ö., 2024. Agricultural shocks, coping policies and deforestation: evidence from the coffee leaf rust epidemic in Mexico. American Journal of Agricultural Economics 106, pp. 1020–57. https://doi.org/10.1111/ajae.124411054

Coyne, D.L. and Ross, J.L., 2014. Protocol for nematode resistance screening: root knot nematodes Meloidogyne spp. Ibadan: International Institute of Tropical Agriculture (IITA).

Dababat, A. A. and Sikora, R. A., 2007. Induced resistance by the multualistic endophyte, Fusarium oxysporum strain 162, toward Meloidogyne incognita on tomato. Biocontrol Science and Technology, 17, pp. 969–975. https://doi.org/10.1080/09583150701582057

de Sousa, L.P., Guerreiro-Filho, O. and Mondego, J.M.C. 2022. The rhizosphere microbiomes of five species of coffee trees. Microbiology Spectrum, 10, e00444-22. https://doi.org/10.1128/spectrum.00444-22

Elling, A. A., 2013. Major emerging problems with minor Meloidogyne species. Phytopathology, 103, pp. 1092–1102. https://doi.org/10.1094/PHYTO-01-13-0019-RVW

FAO (Food and Agriculture Organization of the United Nations), 2024. FAOSTATS. Accessed date September, 12, 2024. https://www.fao.org/faostat/en/#data

Fatobene, B.J.R., Andrade, V.T., Gonçalves, W. and Guerreiro Filho, O., 2019. Coffea canephora clones with multiple resistance to Meloidogyne incognita and M. paranaensis. Experimental agriculture, 55, pp. 443-451. https://doi.org/10.1017/S0014479718000108

Flonc, B., Barbercheck, M. and Ahmad, I., 2021. Observations on the relationships between endophytic Metarhizium robertsii, Spodoptera frugiperda (Lepidoptera: Noctuidae), and maize. Pathogens, 10, pp. 713. https://doi.org/10.3390/pathogens10060713

Guo, Z., Hao, T., Wang, Y., Pan, Y., Ren, F., Liu, X., Che, Y. and Liu, G., 2017. VerZ, a Zn(II)2Cys6 DNA-binding protein, regulates the biosynthesis of verticillin in Clonostachys rogersoniana. Microbiology, 163, pp. 1654–1663. https://doi.org/10.1099/mic.0.000557

Han, P., Zhang, X., Xu, D., Zhang, B., Lai, D. and Zhou, L., 2020. Metabolites from Clonostachys fungi and their biological activities. Journal of Fungi. 6, pp. 229. https://doi.org/10.3390/jof6040229

He, Q., Wang, D., Li, B., Maqsood, A. and Wu, H., 2020. Nematicidal evaluation and active compounds isolation of Aspergillus japonicus ZW1 against root-knot nematodes Meloidogyne incognita. Agronomy, 10, pp. 1222. https://doi.org/10.3390/agronomy10091222

Lamelas, A., Desgarennes, D., López-Lima, D., Villain, L., Alonso-Sánchez, A., Artacho, A., Latorre, A., Moya, A., and Carrion, G., (2020) The bacterial microbiome of Meloidogyne-based disease complex in coffee and tomato. Frontiers in Plant Science, 11. https://doi.org/10.3389/fpls.2020.00136

Lima-Rivera, D., Anell-Mendoza, M.B., Rivera-Fernández, A., Salinas-Castro, A., Cerdán, C., López-Lima, D. and Villain, L., 2024. Host status of plants associated to coffee shady agroecosystems to Meloidogyne paranaensis. Journal of Plant Disease and Protection, 131, pp 873-880. https://doi.org/10.1007/s41348-024-00882-5

Lima-Salgado, S.M., Costa de Rezende, J. and Rodrigues-Nunes, J.A., 2014. Selection of coffee progenies for resistance to nematode Meloidogyne paranaensis in infested area. Crop Breeding and Applied Biotechnology, 14, pp. 94-101. https://doi.org/10.1590/1984-70332014v14n2a17

López-Lima, D., 2021. Determinación de los patógenos asociados a la corchosis de la raíz del cafeto en Veracruz. In: R. Zetina-Lezama, H. Tosquy-Valle, A.L. Del Ángel-Pérez, A. Ríos-Utrera, V. Vázquez-Hernández, V.A. Esqueda-Esquivel and C. Perdomo-Montes eds. Contribuciones tecnológicas para el futuro forestal y agropecuario veracruzano 2021. Ciudad de México: INIFAP. pp. 470-481.

López-Lima, D., Carrion, G., Sánchez-Nava, P., Desgarennes, D., and Villain, L., 2020. Fungal diversity and Fusarium oxysporum pathogenicity associated with coffee corky-root disease in México. Rev. FCA Uncuyo, 52, pp. 276-292. http://revistas.uncu.edu.ar/ojs3/index.php/RFCA/article/view/3075

Lopez-Lima, D., Sánchez-Nava, P., Carrión, G., Espinosa de los Monteros, A. and Villain, L. 2015. Corky-root symptoms for coffee in central Veracruz are linked to the root-knot nematode Meloidogyne paranaensis, a new report for Mexico. European Journal of Plant Pathology, 141, pp. 623-629 https://doi.org/10.1007/s10658-014-0564-9

Lu, L., Tibpromma, S., Karunarathna, S.C., Jayawardena, R.S., Lumyong, S., Xu, J. and Hyde, K.D., 2022, Comprehensive review of fungi on coffee. Pathogens. 11, pp. 411. https://doi.org/10.3390/pathogens11040411

Muller, G., Bills, G. and Foster, M., 2004. Biodiversity of fungi: inventory and monitoring methods. Londres: Elsevier Academic Press.

Morales-Sánchez, V., Díaz, C. E., Trujillo, E., Olmeda, S. A., Valcarcel, F., Muñoz, R., Andrés, M. F., and González-Coloma, A., 2021. Bioactive metabolites from the endophytic fungus Aspergillus sp. SPH2. Journal of Fungi, 7, pp.109. https://doi.org/10.3390/jof7020109

Nguyen, V. T. Yu, N. H. Lee, Y., Hwang, I. M., Bui, H. X. and Kim, J. C., 2021. Nematicidal activity of cyclopiazonic acid derived from Penicillium commune against root-knot nematodes and optimization of the culture fermentation process. Frontiers in Microbiology, 12, https://doi.org/10.3389/fmicb.2021.726504

Randig, O., Bongiovanni, M., Carneiro, R. and Castagnone-Sereno, P., 2002. Genetic diversity of root-knot nematodes from Brazil and development of SCAR markers specific for the coffee-damaging species. Genome, 45, pp. 862–870. https://doi.org/10.1139/g02-054

Schoch, C.L., Seifert, K.A., Huhndorf, S., Robert, V., Spouge, J.L., Levesque, C.A., Chen, W. and Fungal Barcoding Consortium, 2012. Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. PNAS, 109, pp. 6241-6246. https://doi.org/10.1073/pnas.1117018109

Sera, G.H., Sera, T., Fonseca, I.C.B. and Ito, D.S., 2010. Resistência à ferrugem alaranjada em cultivares de café. Coffee Science, 5, pp. 59-66. https://coffeescience.ufla.br/index.php/Coffeescience/article/view/272

SIAP (Servicio de Información Agroalimentaria y Pesquera), 2024. Anuario Estadístico de la Producción Agrícola 2023. Accessed date September, 12, 2024. https://nube.siap.gob.mx/cierreagricola/

Sikandar, A., Zhang, M., Wang, Y., Zhu, X., Liu, X., Fan, H., Xua, Y., Chen, L. and Duan, Y., 2020. In vitro evaluation of Penicillium chrysogenum Snef1216 against Meloidogyne incognita (root-knot nematode). Scientific Reports, 10, pp. 8342. https://doi.org/10.1038/s41598-020-65262-z

Shigueoka, L.H., Sera, G.H., Sera, T., Fonseca, I.C.B., Andreazi, E., Carvalho, F.G., Carducci, F.C. and Ito, D.S., 2016. Reaction of Arabica coffe progenies derivate from Icatu to Meloidogyne paranaensis. Plant Protection 75, 193-198. http://dx.doi.org/10.1590/1678-4499.229

Topalovi?, O., Hussain, M. and Heuer, H., 2020. Plants and Associated Soil Microbiota Cooperatively Suppress Plant-Parasitic Nematodes. Frontiers in Microbiology, 11, p. 313. https://doi.org/10.3389/fmicb.2020.00313

Van Dessel, P., Coyne, D., Dubois, T., De Waele, D. and Franco, J., 2011. In vitro nematicidal effect of endophytic Fusarium oxysporum against Radopholus similis, Pratylenchus goodeyi and Helicotylenchus multicinctus. Nematropica, 41, pp. 154-160. https://journals.flvc.org/nematropica/article/view/76618/74228

Varela-Benavides, I., Durán-Mora, J. and Guzmán-Hernández, T., 2017. Evaluación in vitro de diez cepas de hongos nematófagos para el control de Meloidogyne exigua, Meloidogyne incognita y Radopholus similis. Tecnología en Marcha, 30, pp. 27-37. https://doi.org/10.18845/tm.v30i1.3062

Vázquez, J.T., 1963. Relaciones suelo-nemátodos. In: Memoria del 1er. Congreso Nacional de Ciencia del Suelo. Mexico: Sociedad Mexicana de Ciencia del Suelo. pp. 201-203.

Villain, L., Sarah, J. L., Hernández, A., Bertrand, B., Anthony, F., Lashermes, P., Charmetant, P., Anzueto, F., Figueroa, P. and Carneiro, R.M.D.G., 2013. Diversity of root-knot nematodes parasitizing coffee in Central America. Nematropica, 43, pp. 194–206. https://journals.flvc.org/nematropica/article/view/82708

Wang, L., Qin, Y., Fan, Z., Gao, K., Zhan, J., Xing, R., Liu, S. and Li, P., 2022. Novel lead compound discovery from Aspergillus fumigatus 1T-2 against Meloidogyne incognita based on a chemical ecology study. Journal of Agricultural and Food Chemistry, 70, pp. 4644-4657. https://doi.org/10.1021/acs.jafc.1c08147




URN: http://www.revista.ccba.uady.mx/urn:ISSN:1870-0462-tsaes.v28i2.60307

DOI: http://dx.doi.org/10.56369/tsaes.6030



Copyright (c) 2025 Dinorah Lima-Rivera, Alejandro Salinas-Castro, Gerardo Gutierrez-García, Andrés Rivera-Fernández, Luc Villain, Damaris Desgarennes, Carlos Cerdán, Daniel López-Lima

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.