CYANIDE RESISTANCE AND BIOACCUMULATION OF POTENTIALLY TOXIC ELEMENTS IN DESERT PLANT SPECIES GROWN ON ALKALINE MINING RESIDUES: AN ENVIRONMENTAL SURVIVAL STUDY

María Guadalupe Rangel-Gonzalez, Fernando Amílcar Solís-Domínguez, Aseneth Herrera-Martínez, Jaime López-Luna, Rogelio Carrillo-González, Maria del Carmen Cuevas-Diaz

Abstract


Background: The waste generated at the end of a mining process contains potentially toxic elements (PTEs) and, depending on the extraction method, may also contain cyanide. These threaten ecosystems because PTEs are non-biodegradable and can accumulate in organisms through bioaccumulation. Cyanide is particularly dangerous as it is highly toxic and can inhibit the growth of plant species that could be used in phytoremediation. Objective: To evaluate the cyanide survival capacity of four desert native plant species from the state of Baja California, and their ability to phytostabilize EPTs. Methodology: Completely randomized experiments were conducted under greenhouse conditions, using experimental units with mine tailings amended with four different proportions of plant compost as a mine tailings improver (0 %, 5 %, 10 %, and 15 %). Four native plant species were used for the study: Prosopis sp., Psorothamnus spinosus, Pluchea sericea, and Encelia farinosa. Results: Prosopis sp. demonstrated a high survival capacity in mine tailings containing cyanide (155 mg kg-1) and potentially toxic elements accumulated mainly in the root. Implications: Many plant species show adverse effects on their growth and development due to the toxicity of these elements. Furthermore, phytostabilizing species must be able to survive the climatic conditions of the area where this technique is implemented and tolerate cyanide. Conclusion: It was demonstrated that Prosopis sp. has phytostabilizing capacity by accumulating higher PTE concentrations in its roots without exceeding concentrations in the aerial part. The optimal treatments for this technique were those with 10 % and 15 % compost, which helped the species tolerate cyanide. Therefore, Prosopis sp. is confirmed as an effective native species for phytostabilization.

Keywords


Phytostabilization; potentially toxic elements; cyanide; mesquite.

Full Text:

PDF

References


Abdala, N. R., Bravo, S. and Acosta, M., 2020. Germination and effects of storage of fruits of Prosopis ruscifolia (Fabaceae). Bosque, 41(2), 103–111. Available at: https://doi.org/10.4067/S0717-92002020000200103

Agnello, A.C., Bagard M., van Hullebusch E.D., Esposito G. and Huguenot D., 2016. Comparative bioremediation of heavy metals and petroleum hydrocarbons co-contaminated soil by natural attenuation, phytoremediation, bioaugmentation and bioaugmentation-assisted phytoremediation. Science of the Total Environment, 563-564, pp 693–703. Available at: https://doi.org/10.1016/j.scitotenv.2015.10.061

Ahumada-Mexía, R., Murillo-Jiménez, J.M., Ortega-Rubio, A., Marmolejo-Rodríguez, A.J. and Nava-Sánchez, E.H., 2021. Identification of mining waste using remote sensing technique: A case study in El Triunfo town, BCS, México. Remote Sensing Applications: Society and Environment, 22, pp.100493. Available at: https://doi.org/10.1016/j.rsase.2021.100493

Arcos, A.Y., Betancur U.J., Peñuela G.A. and Aguirre N.J., 2010. Relationship between soluble forms of iron and manganese and the presence of oxidizing bacteria of both elements in the dam Riogrande II-Don Matías (Antioquia, Colombia), Revista Facultad de Ingenieria. 55, pp. 45–54. Available at: https://doi.org/10.17533/udea.redin.14713

Au, W., Yu, X. and Gu, J., 2018. Phytoremediation of cyanide and iron cyanide complexes and the mechanisms involved Free Cyanide and Iron-cyanide, Applied Environmental Biotechnology, 3, pp. 53–60. Available at: https://doi.org/10.26789/AEB.2018.01.002

Barbaro, L., Karlanain, M. and Mata, D., 2018. Importancia del pH y la condutividad Eléctrica (CE) en los sustratos de las plantas, Journal of Chemical Information and Modeling, 1, p. 13. Available at: http://hdl.handle.net/20.500.12123/16823

Barbeito, V. and Bono, A., 2006. Determinación de fracciones texturales para suelos de la región semiárida Pampeana usando variaciones al Método de Bouyoucos, Aspectos de la evaluación y el manejo de los suelos en la región semiárida Pampeana, pp. 1–14.

CESPM., 2016. Resumen de análisis físicoquimicos y microbiológicos de agua potable durante 2016. Mexicali, B.C., Mexico.

Dean, W.E., 1974. Determination of carbonate and organic matter in calcareus sediments and sedimentary rocks by loss on ignition: Comparison with other methods, Journal of Sedimentary Petrology, 44, pp. 242–248.

EPA., 1978. EPA-600/1-78-027 Reviews of the environmental effects of pollutants: V. Cyanide. Springfield, Virginia: National Technical Information Service.

EPA., 1992. Acid Digestion of Aqueous Samples and Extracts for total metals for analysis by FLAA or ICP spectroscopy, ReVision, pp. 1–5.

EPA., 1993. Standards for disposal of sewage sludge; final rules: Part II . Federal Register , Feb. 19, pp. 9247 – 9415.

EPA., 2000. pH in Liquid and Soil SW-846 Method 9040 (Liquid) and SW-846 Method 9045 (Soil)’, 9040, pp. 1–3.

EPA., 2007. Microwave assisted acid digestion of sediments, sludges, soils, and oils, Method 3051A.

Hayes, S. M., White, S. A., Thompson, T. L., Maier, R. M. and Chorover, J., 2009. Changes in lead and zinc lability during weathering induced acidification of desert mine tailings: Coupling chemical and micro-scale analyses. Applied Geochemistry. 24, 2234-2245. Available at: https://doi.org/10.1016/j.apgeochem.2009.09.010

Jing, Y., He, Z. and Yang, X., 2007. Role of soil rhizobacteria in phytoremediation of heavy metal contaminated soils. Journal of Zhejiang University SCIENCE B, 8, pp. 192–207. Available at: https://doi.org/10.1631/jzus.2007.B0192

Kabata-Pendias, A. and Pendias, H., 2001. Trace Elements in Plants, in Trace Elements in Soils and Plants. Boca Raton, Florida: CRC Press LLC, pp. 83–84.

Ma, Y., Rajkumar, M., Zhang C. and Freitas H., 2016. Beneficial role of bacterial endophytes in heavy metal phytoremediation, Journal of Environmental Management, 174, pp. 14–25. Available at: https://doi.org/10.1016/j.jenvman.2016.02.047

Medina, G., Cervantes, G., Castro, C., Sánchez Cohen, I. and Villanueva-Díaz, J., 2005. Morfología y escarificación de la semilla de mezquite, huizache y ahuehuete. Técnica Pecuaria En México, 43(3), pp. 441-448.

Mendez, M.O., Glenn, E.P. and Maier, R.M., 2007. Phytostabilization Potential of Quailbush for Mine Tailings, Journal of Environmental Quality, 36, pp. 245–253. Available at: https://doi.org/10.2134/jeq2006.0197

Norma ASTM D-2216., 2006. Método de ensayo para determinar el contenido de humedad de un suelo’, Universidad Nacional de Ingenieria Lima, 1(Primer Taller de Mecanica de Suelos), pp. 1–6. Available at: http://www.lms.uni.edu.pe/Determinacion del contenido de Humedad.pdf

Olsen, S.R., Cole, C.V., Watanabe, F.S. and Dean, L.A. 1954. Estimation of available phosphorus in soils by extraction with sodium bicarbonate. United States Department of Agriculture, 939, 1–18. Available at: https://searchworks.stanford.edu/view/10498019

Olúa B.C.G. and Gordillo U.C.C., 2003. Guía de forestación para el municipio de Mexicali, B.C., XVII Ayuntamiento de Mexicali, B.C. Available at: https://es.scribd.com/document/265803364/Guia-Forestacion-Mexicali

Patnaik, P. 1997. Handbook of environmental analysis: chemical pollutants in air, water, soil, and solid wastes, International Journal of Environmental Analytical Chemistry, 97, p.1420 Available at: https://doi.org/10.1080/03067319.2017.1421129

Rangel-González, M.G. Solís?Domínguez, F.A., Herrera?Martínez, A., Carrillo?González, R., López?Luna, J., González?Chávez. M.C.A. and Rodríguez M.D., 2024. Cyanide biodegradation: a scoping review, International Journal of Environmental Science and Technology, 22, pp.2047-2072. Available at: https://doi.org/10.1007/s13762-024-05885-1

Rao, A.V. and Venkateswarlu, B. 1983. Microbial ecology of the soils of Indian desert, Agriculture, Ecosystems and Environment, 10, pp. 361–369. Available at: https://doi.org/https://doi.org/10.1016/0167-8809(83)90087-7

Sáinz, A., Grande, J. A., de la Torre, M. L., and Sánchez-Rodas, D. (2002). Characterization of sequential leachate discharges of mining waste rock dumps in the Tinto and Odiel rivers. Journal of Environmental Management, 64(4), 345–353. Available at: https://doi.org/https://doi.org/10.1006/jema.2001.0497

Sánchez, C.L.I., 2010. Diversidad de bacterias fijadoras de nitrógeno aisladas de suelo de Chinampa y su efecto en plantas de interes agricola. Instituto Politécnico Nacional, Mexico, D.F.

SEMARNAT., 2002. Secretaría de Medio Ambiente y Recursos Naturales. Norma Oficial Mexicana NOM-021-RECNAT-2000, Que establece las especificaciones de fertilidad, salinidad y clasificación de suelos. Estudios, muestreo y análisis.’, Diario Oficial de la Federación. Available at: http://dof.gob.mx/nota_detalle.php?codigo=717582&fecha=31/12/2002

SGM., 2021. Anuario Estadístico de la Minería Mexicana, 2020, Servicio Geológico Mexicano, p. 249. Available at: https://www.gob.mx/sgm/articulos/consulta-el-anuario-estadistico-de-la-mineria-mexicana

Solís-Dominguez, F.A., White, S. A., Borrillo, H. T., Amistadi, M.K., Chorover, J. and Maier R.M., 2012. Response of key soil parameters during compost-assisted phytostabilization in extremely acidic tailings: Effect of plant species, Environmental Science and Technology, 46, pp. 1019–1027. Available at: https://doi.org/10.1021/es202846n

Solís-Domínguez, F.A., Valentín- Vargas A., Chorover J., and Maier R. M., 2011. Effect of arbuscular mycorrhizal fungi on plant biomass and the rhizosphere microbial community structure of mesquite grown in acidic lead/zinc mine tailings, Science of the Total Environment, 409, pp. 1009–1016. Available at: https://doi.org/10.1016/j.scitotenv.2010.11.020

Taiwo, A.M., Gbadebo, A.M., Oyedepo, J.A., Ojekunle, Z.O., Alo, O.M., Oyeniran, A.A., Onalaja, O.J., Ogunjimi D. and Taiwo O.T., 2016. Bioremediation of industrially contaminated soil using compost and plant technology. Journal of Hazardous Materials, 304, pp. 166–172. Available at: https://doi.org/10.1016/j.jhazmat.2015.10.061

Vincent, J.M. 1970. A Manual for the Practical Study of Root-nodule Bacteria. International Biological Programme. Blackwell Scientific (IBP handbook no. 15). Available at: https://books.google.com.mx/books?id=dcQcAQAAIAAJ

Yu, X., 2015. Uptake, assimilation and toxicity of cyanogenic compounds in plants: facts and fiction, International Journal of Environmental Science and Technology, 12, pp. 763–774. Available at: https://doi.org/10.1007/s13762-014-0571-6




URN: http://www.revista.ccba.uady.mx/urn:ISSN:1870-0462-tsaes.v28i2.60260

DOI: http://dx.doi.org/10.56369/tsaes.6026



Copyright (c) 2025 María Guadalupe Rangel-Gonzalez, Fernando Amílcar Solís-Domínguez, Aseneth Herrera-Martínez, Jaime López-Luna, Rogelio Carrillo-González, Maria del Carmen Cuevas-Diaz

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.