EFFECT OF VERMICOMPOST LEACHATE TYPE ON CORN GROWTH, YIELD AND QUALITY

Juana Cruz Gacía-Santiago, Miriam Sánchez-Vega, Hermes Pérez-Hernández, Alonso Méndez-López

Abstract


Background. Vermicompost leachate enhances soil quality and promotes sustainable agricultural production. However, the characteristics and effects of vermicompost leachate on crops depend on the type of waste and the proportion in which the materials are mixed during their preparation. Objective. To evaluate the effect of different types of vermicompost leachate on the morphological parameters, yield, and fruit quality of corn (hybrid AN-447). Methodology. Eighteen vermicompost leachates were evaluated, obtained from vermicomposting various mixtures of three types of manure (bovine [V], equine [E], and goat [C]), two plant residues (vegetables [H] and corn stover [R]), and three manure-to-plant residue ratios (50:50, 60:40, and 70:30%, v:v), along with one commercial vermicompost leachate (LC), and a control. A randomized complete block design with four replications was used. Leachates were drench-applied at 10% every 15 days starting from corn emergence. Results. The results showed that the leachates had a significant effect on morphological parameters and ear characteristics, though they were not statistically superior to the control. On the other hand, corn grain yield varied according to the type of vermicompost leachate applied, with most leachates showing a notable increase in yield, on average 61% higher than the control. Additionally, total soluble solids, titratable acidity, vitamin C content, and fruit firmness fluctuated depending on the leachate type; however, only total soluble solids and titratable acidity were improved with the application of leachates E70-H30 and C60-R40. Implications. The study suggests that careful selection of both the type of leachate and the proportion of waste materials used in its production is essential to maximize its benefits in agricultural production. Conclusion. The type of vermicompost leachate applied to corn crops affects morphological traits, yield, and fruit quality in different ways.

Keywords


Zea mays; agroecology; organic fertilization; vermicomposting; waste.

Full Text:

PDF

References


A’ali, R., Jafarpour, M., Kazemi, E. and Pessarakli, M., 2017. Effects of raw materials on vermicompost qualities. Journal of Plant Nutrition, 40, pp.1635–1643. https://doi.org/10.1080/01904167.2016.1270319

AOAC., 2000. Official Methods of Analysis, 17th edition. Washington, DC, USA: Association of Official Analytical Chemists. pp. 490-510.

Aremu, A.O., Stirk, W.A., Kulkarni, M.G., Tarkowská, D., Ture?ková, V., Gruz, J., Šubrtová, M., P?n?ík, A., Novák, O., Doležal, K., Strnad, M. and Van Staden, J., 2015. Evidence of phytohormones and phenolic acids variability in garden-waste-derived vermicompost leachate, a well-known plant growth stimulant. Plant Growth Regulation, 75, pp. 483–492. https://doi.org/10.1007/s10725-014-0011-0

Ávila-Juárez, L., Rodríguez González, A., Rodríguez Piña, N., Guevara González, R.G., Torres Pacheco, I., Ocampo Velázquez, R.V. and Moustapha, B., 2015. Vermicompost leachate as a supplement to increase tomato fruit quality. Journal of Soil Science and Plant Nutrition, 15, pp. 46–59. https://doi.org/10.4067/S0718-95162015005000005

Benti, G., Tadesse, F., Degefa, G., Jafar, M. and Bir, A., 2021. Integrated effects of vermicompost and nitrogen on yield and yield components of tomato (Lycopersicum esculentum L.) in lowlands of eastern Harerghe. Plant, 9, pp. 81–87. https://doi.org/10.11648/j.plant.20210903.16

Bidabadi, S.S., 2018. Waste management using vermicompost derived liquids in sustainable horticulture. Trends in Horticulture, 1, pp. 1-9. https://doi.org/10.24294/th.v1i3.175

?abilovski, R., Manojlovi?, M.S., Popovi?, B.M., Radoj?in, M.T., Magazin, N., Petkovi?, K., Kova?evi?, D. and Laki?evi?, M.D., 2023. Vermicompost and vermicompost leachate application in strawberry production: Impact on yield and fruit quality. Horticulturae, 9, pp. 337. https://doi.org/10.3390/horticulturae9030337

Chaoui, H.I., Zibilske, L.M. and Ohno, T., 2003. Effects of earthworm casts and compost on soil microbial activity and plant nutrient availability. Soil Biology and Biochemistry, 35, pp. 295–302. https://doi.org/10.1016/S0038-0717(02)00279-1

Chinsamy, M., Kulkarni, M.G. and Van Staden, J., 2013. Garden-waste-vermicompost leachate alleviates salinity stress in tomato seedlings by mobilizing salt tolerance mechanisms. Plant Growth Regulation, 71, pp. 41–47. https://doi.org/10.1007/s10725-013-9807-6

Dube, L., Naidoo, K.K., Arthur, G.D., Aremu, A.O., Gruz, J., Šubrtová, M., Jarošová, M., Tarkowski, P. and Doležal, K., 2018. Regulation of growth, nutritive, phytochemical and antioxidant potential of cultivated Drimiopsis maculata in response to biostimulant (vermicompost leachate, VCL) application. Plant Growth Regulation, 86, pp. 433–444. https://doi.org/10.1007/s10725-018-0441-1

El-Hameid, A. and Adel, S., 2018. Improving productivity and quality of mango using humic acid and vermicomposting leachate in north Sinai. Egyptian Journal of Desert Research, 68, pp. 37–59.

García, E., 2004. Modificaciones al sistema de clasificación climática de Köeppen, 5a edición. Instituto de Geografía-UNAM: Serie Libros, México. pp. 11-90.

García, R.C., Dendooven, L. and Gutiérrez-Miceli, F., 2008. Vermicomposting leachate (worm tea) as liquid fertilizer for maize (Zea mays L.) forage production. Asian Journal of Plant Sciences, 7, pp. 360–367. https://doi.org/10.3923/ajps.2008.360.367

García-Santiago, J.C., Pérez Hernández, H., Sánchez Vega, M. and Méndez López, A., 2024. Benefits of vermicompost in agriculture and factors affecting its nutrient content. Journal of Soil Science and Plant Nutrition, 24, pp. 4898–4917. https://doi.org/10.1007/s42729-024-01880-0

Gómez-Brandón, M., Aira, M. and Domínguez, J., 2020. Vermicomposts are biologically different: Microbial and functional diversity of green vermicomposts. In: S.A. Bhat, A.P. Vig, F. Li, and B. Ravindran (Eds.), Earthworm assisted remediation of effluents and wastes. Singapore. Springer. pp. 125–140. https://doi.org/10.1007/978-981-15-4522-1_8

Goykovic, V. and Saavedra del Real, G., 2007. Algunos efectos de la salinidad en el cultivo del tomate y prácticas agronómicas de su manejo. Idesia (Arica), 25, pp. 47–58. https://doi.org/10.4067/S0718-34292007000300006

Gusain, R. and Suthar, S., 2020. Vermicomposting of invasive weed Ageratum conyzoids: Assessment of nutrient mineralization, enzymatic activities, and microbial properties. Bioresource Technology, 312, pp. 123537. https://doi.org/10.1016/j.biortech.2020.123537

Gutiérrez-Miceli, F.A., García-Gómez, R.C., Oliva-Llaven, M.A., Montes-Molina, J.A. and Dendooven, L., 2017. Vermicomposting leachate as liquid fertilizer for the cultivation of sugarcane (Saccharum sp.). Journal of Plant Nutrition, 40, pp. 40–49. https://doi.org/10.1080/01904167.2016.1193610

INIFAP., 2017. Agenda técnica agrícola Coahuila [online]: Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias. Secretaría de Agricultura y Desarrollo Rural. Disponible en: https://vun.inifap.gob.mx/BibliotecaWeb/_Content?%2f%2f=AT [accesado el 10 Agosto del 2024].

Jabeen, N. and Ahmad, R., 2017. Growth response and nitrogen metabolism of sunflower (Helianthus annuus L.) to vermicompost and biogas slurry under salinity stress. Journal of Plant Nutrition, 40, pp. 104–114. https://doi.org/10.1080/01904167.2016.1201495

Kato, T.A., Mapes, C., Mera, L.M., Serratos, J.A. and Bye, R.A., 2009. Origen y diversificación del maíz: Una revisión analítica. México: UNAM-CONABIO. pp. 43-66.

Khaliq, T., Mahmood, T., Kamal, J. and Masood, A., 2004. Effectiveness of farmyard manure, poultry manure and nitrogen for corn (Zea mays L.) productivity. International Journal of Agriculture and Biology (Pakistan), 6, pp. 260–263.

Khayat, M., 2019. Investigation role of vermicompost to improve quantitative and qualitative characteristics of corn (Zea mays L.) production. Journal of Crop Nutrition Science, 5, pp. 47–60. https://oiccpress.com/jcns/article/view/5911/2602

León-Anzueto, E., Abud-Archila, M., Dendooven, L., Ventura-Canseco, L.M.C. and Gutiérrez-Miceli, F.A., 2011. Effect of vermicompost, worm-bed leachate and arbuscular mycorrizal fungi on lemongrass (Cymbopogon citratus (DC) Stapf.) growth and composition of its essential oil. Electronic Journal of Biotechnology, 14, pp. 1–11.

Makkar, C., Singh, J. and Parkash, C., 2017. Vermicompost and vermiwash as supplement to improve seedling, plant growth and yield in Linum usitassimum L. for organic agriculture. International Journal of Recycling of Organic Waste in Agriculture, 6, pp. 203–218. https://doi.org/10.1007/s40093-017-0168-4

Musito-Ramírez, N., Vega Sánchez, M.C., Rodríguez Valdés, J.G. and Padrón Corral, E., 2004. Genotipos de maíz tolerantes a salinidad; un estudio preliminar para iniciar un programa de selección. Revista Agraria, 1, pp. 18–23. https://doi.org/10.59741/agraria.v1i3.296

Padayatty, S.J., Daruwala, R., Wang, Y., Eck, P.K., Song, J., Koh, W.S., Levine, M., 2001. Vitamin C: From molecular actions to optimum intake. In: L. Packer (Ed.), Handbook of antioxidants. Washington, DC, USA. CRC Press. pp. 117–145.

Quaik, S., Embrandiri, A., Rupani, P.F. and Ibrahim, M.H., 2012. Potential of vermicomposting leachate as organic foliar fertilizer and nutrient solution in hydroponic culture: a review. 2nd International Conference on Environment and BioScience, Phnom Penh, Cambodia, 28-29 September, 2012. IACSIT Press, Singapore. pp. 43–47.

Sattar, A., Sher, A., Ijaz, M., Ul-Allah, S., Butt, M., Irfan, M., Rizwan, M.S., Ali, H. and Cheema, M.A., 2020. Interactive effect of biochar and silicon on improving morpho-physiological and biochemical attributes of maize by reducing drought hazards. Journal of Soil Science and Plant Nutrition, 20, pp. 1819–1826. https://doi.org/10.1007/s42729-020-00253-7

SIAP., 2024. Anuario estadístico de la producción agrícola [online] México: Servicio de Información Agroalimentaria y Pesquera. Disponible en: http://infosiap.siap.gob.mx/aagricola_siap_gb/icultivo/index.jsp [accesado el 15 de Agosto del 2024].

Singh, N.I. and Chauhan, J.S., 2009. Response of French bean (Phaseolus vulgaris L.) to organic manures and inorganic fertilizer on growth and yield parameters under irrigated condition. Nature and Science, 7, pp. 52–54.

Singh, R., Gupta, R.K., Patil, R.T., Sharma, R.R., Asrey, R., Kumar, A. and Jangra, K.K., 2010. Sequential foliar application of vermicompost leachates improves marketable fruit yield and quality of strawberry (Fragaria × ananassa Duch.). Scientia Horticulturae, 124, pp. 34–39. https://doi.org/10.1016/j.scienta.2009.12.002

Tejada, M., Gonzalez, J.L., Hernandez, M.T. and Garcia, C., 2008. Agricultural use of leachates obtained from two different vermicomposting processes. Bioresource Technology, 99, pp. 6228–6232. https://doi.org/10.1016/j.biortech.2007.12.031

Torres, A., Héctor Ardisana, E., León Aguilar, R., Zambrano Gavilanes, F. and Fosado-Téllez, O., 2024. Vermicompost leachate-based biostimulant and its effects on physiological variables and yield of different crops in Manabí, Ecuador. Ciencia y Tecnología Agropecuaria, 25, pp. e3388. https://doi.org/10.21930/rcta.vol25_num1_art:3388

Torres, A., Héctor, E., Fosado, O., Cué, J., Mero, J., León, R. and Peñarrieta, S., 2019. Respuesta del pimiento (Capsicum annuum L.) ante aplicaciones foliares de diferentes dosis y fuentes de lixiviado de vermicompost. Bioagro, 31, pp. 213–220.

Ureta, C., González, E.J., Espinosa, A., Trueba, A., Piñeyro-Nelson, A. and Álvarez-Buylla, E.R., 2020. Maize yield in Mexico under climate change. Agricultural Systems, 177, pp. 102697. https://doi.org/10.1016/j.agsy.2019.102697

Wu, M. and Kubota, C., 2008. Effects of high electrical conductivity of nutrient solution and its application timing on lycopene, chlorophyll and sugar concentrations of hydroponic tomatoes during ripening. Scientia Horticulturae, 116, pp. 122–129. https://doi.org/10.1016/j.scienta.2007.11.014

Wu, Q., Zhang, J., Liu, X., Chang, T., Wang, Q., Shaghaleh, H. and Hamoud, Y.A., 2023. Effects of biochar and vermicompost on microorganisms and enzymatic activities in greenhouse soil. Frontiers in Environmental Science, 10, pp. 1060277. https://doi.org/10.3389/fenvs.2022.1060277

Zandonadi, D.B. and Busato, J., 2012. Vermicompost humic substances: technology for converting pollution into plant growth regulators. International Journal of Environmental Science and Engineering Research, 3, pp. 73–84.




URN: http://www.revista.ccba.uady.mx/urn:ISSN:1870-0462-tsaes.v28i2.59293

DOI: http://dx.doi.org/10.56369/tsaes.5929



Copyright (c) 2025 Alonso Méndez-López, Juana Cruz Gacía-Santiago, Miriam Sánchez-Vega, Hermes Pérez-Hernández

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.