WEED FLORA ASSOCIATED WITH THE CULTURE OF ANDEAN RASPBERRY (Rubus glaucus Benth.) IN THE MUNICIPALITIES PAMPLONA AND CHITAGÁ, NORTH OF SANTANDER, COLOMBIA

Enrique Quevedo García, Giovanni Orlando Cancino Escalante, Luis Roberto Sanchéz Montaño

Abstract


Background: Andean raspberry (Rubus glaucus Benth.) is one of the most cultivated species of the genus Rubus in colombian production systems, where it is characterized by the control of weeds through tillage and the use of herbicides, affecting biodiversity. Objective: To determine the diversity of weed flora associated with this crop in the municipalities of Pamplona and Chitagá, Norte de Santander, Colombia. Methodology: A descriptive observational study was carried out, with a cross-sectional field design, to determine the weed flora and chemical properties of soil samples from R. glaucus farms. The botanical composition and plant diversity of Shannon-Wiener (H'), Simpson (D'), Pielou (J') and the Jaccard similarity coefficient (Ij) were determined in 18 farms, and the chemical properties of the soil were determined in only 10 of the sampled farms. Results: The floristic composition was represented by 120 individuals grouped in 36 families, 99 genera and 113 species. The subclass Dicotyledonae was the most abundant (78.33%). Asteraceae, with 27 species, was the family with the greatest species richness, followed by Poaceae (18) and Polygonaceae (6). The municipality of Pamplona presented the highest abundance (400 individuals), where Galinsoga parviflora (Asteraceae) was the most frequent species (4.75%). In Chitagá, Persicaria nepalensis and Rumex crispus (Polygonaceae) were the most frequent species (4.32 and 3.70%, respectively). Significant differences in species diversity were observed between the sampling areas (p≤0.05), for the number of species and individuals, and well as the Simpson and Shannon-Wiener indices. These differences exhibited an inverse trend between the two municipalities, except for the Pielou index. The municipality with the greatest diversity was Pamplona (H' = 3.476, D'= 0.968). There was a differentiated floristic composition among the municipalities (IJ = 51.33%) with 57 common species. Implications: The results highlight the need for localized weed management that considers their biodiversity as part of the production system and provide a basis for sustainable control strategies and future studies on allelopathy in R. glaucus. Conclusion: The floristic composition of the communities differed, with minimal similarity indicating that most species from one area do not occur in the other, implying that both are minor deposits of agrobiodiversity. These results suggest that in agronomic management, different weed populations should be considered for the yield of R. glaucus.

Keywords


Plant composition; Species richness; Biodiversity; Species dominance; Floristic similarity.

Full Text:

PDF

References


Agronet (Red de Información y Comunicación del Sector Agropecuario Colombiano)., 2021. Results of the municipal agricultural evaluations of the year 2021. Bogotá. https://www.agronet.gov.co/estadistica/Paginas/home.aspx?cod=1

Anzalone, A., Arizaleta, M. and González, M., 2012. La flora arvense en huertos de naranjo Valencia y su relación con las características del suelo en dos municipios del estado Yaracuy, Venezuela. Bioagro, 24(1), pp. 23-32. https://www.redalyc.org/pdf/857/85723518004.pdf

Arango-Cortés, L.G. and Gómez-Pinzón, L.M., 2000. Estudio de la competencia entre las arvenses y el cultivo de la mora (Rubus glaucus Benth) en la zona de Manizales Caldas. https://repository.agrosavia.co/handle/20.500.12324/21722

Ayala, L., Valenzuela, C. and Bohórquez, Y., 2013. Variables determinantes de la madurez comercial en la mora de castilla (Rubus glaucus Benth.). Scientia Agroalimentaria, 1, pp. 39-44. https://revistas.ut.edu.co/index.php/scientiaagro/article/view/29

Bajwa, A.A., Sadia, S., Ali, H.H., Jabran, K., Masood Peerzada, A. and Singh Chauhan, B., 2016. Biology and management of two important Conyza weeds: a global review. Environmental Science and Pollution Research, 23, pp. 24694-24710. https://doi.org/10.1007/s11356-016-7794-7

Barbour, M.G., Burk, J.H. and Pitts, W.D., 1980. Terrestrial plant ecology. Menlo Park: Benjamin/Cummings.

Barroso, J., Miller, Z., Lehnhoff, E., Hatfield, P. and Menalled, F., 2015. Impacts of cropping system and management practices on the assembly of weed communities”. Weed Research, 55(4), pp. 426-435. https://doi.org/10.1111/wre.12155

Bernal, R., Gradstein, S. and Celis, M., 2015. Catálogo de plantas y líquenes de Colombia. Bogotá: Instituto de Ciencias Naturales, Universidad Nacional de Colombia. http://catalogoplantasdecolombia.unal.edu.co

Blanco-Valdes, Y., 2016. El rol de las arvenses como componente en la biodiversidad de los agroecosistemas. Cultivos Tropicales, 37(4), pp. 34-56. https://www.redalyc.org/articulo.oa?id=193247419003

Bolaños Benavides, M. M., Cardona, W.A., García Muñoz, M.C., Zapata Narváez, Y.A., Beltrán Acosta, C.R., Vásquez Romero, R.E., Martínez Lemus, E.P., Hio, J.C., Ortega Flórez, N.C., Peña Holguín, A.C., Bautista Montealegre, L.G. and López Melo, D.A., 2024. Mora (Rubus glaucus Benth.): Manual de recomendaciones técnicas para su cultivo en el departamento de Cundinamarca. Bogotá: Universidad Nacional de Colombia: Corredor Tecnológico Agroindustrial CTA-2. http://hdl.handle.net/20.500.12324/40713

Briceño, K., 2020. Índice de Simpson: Fórmula, Interpretación y Ejemplo. Lifeder. https://www.lifeder.com/indice-simpson/ (23 de octubre de 2020).

Brickell, C. 1992. Código internacional de nomenclatura de plantas cultivadas 1980. Madrid: Real Jardín Botánico, Consejo Superior de Investigaciones Científicas; Asociación Española de Parques y Jardines Públicos.

Caamal, J.A., 2004. Arvenses. En: Zuñiga F.B., (ed.). Técnicas de muestreo para manejadores de recursos naturales. México: Universidad Nacional Autónoma de México.

Cancino-Escalante, G., Quevedo-García, E., Villamizar, C., Sánchez-Montaño, L. and Díaz-Carvajal, C., 2014. Selección de materiales promisorios de mora (R. glaucus Benth) en los municipios de Pamplona y Chitagá, región Nororiental de Colombia. Bistua, 12(1), pp. 93-114. https://revistas.unipamplona.edu.co/ojs_viceinves/index.php/BISTUA/article/view/1822

Cancino-Escalante, G., Sánchez-Montaño, L., Quevedo-García, E. and Díaz-Carvajal, C., 2011. Caracterización fenotípica de accesiones de especies de Rubus L. de los municipios de Pamplona y Chitagá, región Nororiental de Colombia. Universitas Scientiarum, 16(3), pp. 219-233. https://doi.org/10.11144/Javeriana.SC16-3.pcor

Castellanos, L., Cepeda, M. and Leal, L., 2022. Cobertura de especies de arvenses en ocho municipios del departamento de Boyacá, Colombia. INGE CUC, 18(2), pp. 177-188. http://doi.org/10.17981/ingecuc.18.2.2022.14

Castro-Díez, P., Fierro-Brunnenmeister, N., González-Muñoz, N. and Gallardo, A., 2012. Effects of exotic and native tree leaf litter on soil properties of two contrasting sites in the Iberian Peninsula. Plant and Soil, 350, pp. 179-191. https://doi.org/10.1007/s11104-011-0893-9

Chauhan, B., 2020. Grand challenges in weed management. Frontiers in Agronomy, 1, p. 3. https://doi.org/10.3389/fagro.2019.00003

Concenço G., André, A., Ferreira da Silva, A., Galon, L., Alves, E. and Aspiazu I., 2014. Ciência das plantas daninhas: histórico, biologia, ecologia e fisiologia. En: Monquero, A. ed. Aspectos da biologia e manejo das plantas daninhas. Brasil: Rima.

da Conceição de Matos, C., da Silva Teixeira, R., Ribeiro da Silva, I., Dutra Costa, M. and da Silva, A.A., 2019. Interspecific competition changes nutrient: nutrient ratios of weeds and maize. Journal of Plant Nutrition and Soil Science, 182(2), pp. 286-295. https://doi.org/10.1002/jpln.201800171

Damalas, C.A., 2008. Distribution, biology, and agricultural importance of Galinsoga parviflora (Asteraceae). Weed Biology and Management, 8(3), pp. 147-153. https://doi.org/10.1111/j.1445-6664.2008.00290.x

De Cauwer, B., Biesemans, N., De Ryck, S., Delanote, L., Dewaele, K., Willekens, K., Vanden Nest, T. and Reheul, D., 2021. Effects of soil and crop management practices and pedohydrological conditions on the seedbank size of Galinsoga spp. in organic vegetable fields. Weed Research, 61(1), pp. 55-67. https://doi.org/10.1111/wre.12457

Derrouch, D., Dessaint, F., Fried, G. and Chauvel, B., 2021. Weed community diversity in conservation agriculture: Post-adoption changes. Agriculture, Ecosystems & Environment, 312(1), pp.107351. https://doi.org/10.1016/j.agee.2021.107351

Díaz-Granados, M., 2022. A taxonomic summary of useful plants in Colombia. In: Negrão, R. Monro, A.K., Castellanos-Castro, C. and Díazgranados, M. eds. Catalogue of useful plants of Colombia. Richmond: Royal Botanic Gardens Kew, pp. 135-147.

EPPO (European and Mediterranean Plant Protection Organization)., 2025. EPPO Global Database. https://gd.eppo.int

Forero-Pineda, N., Serrano-Cely, P.A., Forero-Ulloa, F.E., Almanza-Merchán, P.J. and Cely-Reyes, G.E., 2021. Composition and abundance of weed-species in relation to physicochemical variables in soil for peach Prunus persica L. var. Rubidoux. Revista Colombiana de Ciencias Hortícolas, 15(2), e12141. https://doi.org/10.17584/rcch.2021v15i2.12141

García, F., 2014. Classificação e mecanismos de sobrevivencia das plantas daninhas. En: Monquero, A. ed. Aspectos da biología e manejo das plantas daninhas. Sao Carlos: RiMa. pp. 33-60.

Gómez-Degraves, A. and Gómez-Marquina, K., 2018. Diseño y análisis de experimentos agrícolas con SPSS. Madrid: Amazon.

González-Castro, Y., Manzano-Durán, O. and García-Hoya, O., 2019. Puntos críticos de la cadena productiva de la mora (Rubus glaucus Benth), en el municipio de Pamplona, Colombia. Revista de Investigación, Desarrollo e Innovación, 10(1), pp. 9-22. https://doi.org/10.19053/20278306.v10.n1.2019.10008

Hashemi, S.M., Peshin, R. and Feola, G., 2014. “From the farmers” Perspective: Pesticide use. In: Pimentel, D. and Peshin, R., eds. Integrated pest management reviews. New York: Springer. pp. 409-432.

Hernández-Sampieri, R., Fernández-Collado, C. and Baptista-Lucio, M.D.P., 2014. Metodología de la Investigación. México: McGrawHill.

Hoyos, V., Martínez, M.J. y Plaza, G., 2015. Malezas asociadas a los cultivos de cítricos, guayaba, maracuyá y piña en el departamento del Meta, Colombia. Revista Colombiana de Ciencias Hortícolas, 9(2), pp. 247-258. https://doi.org/10.17584/rcch.2015v9i2.4181

IGAC (Instituto Geográfico Agustín Codazzi), 2006. Estudio General de Suelos y Zonificación de Tierras: Del Departamento de Norte de Santander, Bogotá, Colombia. Bogotá, Colombia: IGAC.

Jaccard, P., 1908. Nouvelles recherches sur la distribution florale. Bulletin de la Société Vaudoise des Sciences Na-turelle, 44, pp. 223-270. https://doi.org/10.5169/seals-268384

Jadán, O., Torres, B., Selesi, D., Peña, D., Rosales, C. y Günter, S., 2016. Diversidad florística y estructura en cacaotales tradicionales y bosque natural (Sumaco, Ecuador). Colombia Forestal, 19(2), pp. 129-142. https://doi.org/10.14483/udistrital.jour.colomb.for.2016.2.a01

L.K.S. Colombia Sas., 2013. Informe final. Programa de transformación productiva. pp. 126-131. https://www.colombiaproductiva.com/getattachment/be970d94-1748-4edc-8aac-07f7969d7a12/Informe-de-Gestion-2013.aspx

Lazzaro, L., Giuliani, C., Fabiani, A., Agnelli, A., Pastorelli, R., Lagomarsino, A., Benesperi, R., Calamassi, R. and Foggi, B., 2014. Soil and plant changing after invasion: the case of Acacia dealbata in a Mediterranean ecosystem. Science of the Total Environment, 497, pp. 491-498. https://doi.org/10.1016/j.scitotenv.2014.08.014

MacLaren, C., Storkey, J., Menegat, A., Metcalfe, H. and Dehnen-Schmutz, K., 2020. An ecological future for weed science to sustain crop production and the environment. A review. Agronomy for Sustainable Development, 40, pp. 24. https://doi.org/10.1007/s13593-020-00631-6

Magurran, A. E., 1988. Ecological diversity and its measurement. New Jersey: Princeton University Press.

Majewska, M., B?aszkowski, J., Nobis, M., Rola, K., Nobis, A., ?akomiec, D., Czachura, P. and Zubek, S., 2015. Root-inhabiting fungi in alien plant species in relation to invasion status and soil chemical properties. Symbiosis, 65, pp. 101-115. https://doi.org/10.1007/s13199-015-0324-4

Martínez Arévalo, J.V., 2022. El cálculo de diversidad biológica. Parte I: Diversidad biológica alfa. Tikalia, 41(1), pp. 48-62.

Marulanda, M., López, A. and Uribe, M., 2012. Genetic diversity and transferability of Rubus microsatellite markers to South American Rubus species. In: Caliskan, M. ed. The molecular basis of plant genetic diversity. Rijeka: In Tech. pp. 151-164.

Matos, C., Costa, M., Silva, I. and Silva, A., 2019. Competitive capacity and rhizosphere mineralization of organic matter during weed-soil microbiota interactions. Planta Daninha, 37, pp.e019182676. https://doi.org/10.1590/S0100-83582019370100007

Mora-Donjuán, C.A., Burbano-Vargas, O.N., Méndez-Osorio, C. and Castro-Rojas, D.F., 2017. Evaluación de la biodiversidad y caracterización estructural de un bosque de encino (Quercus L.) en la Sierra Madre del Sur, México. Revista Forestal Mesoamericana Kurú, 14(35), pp. 68-75. https://doi.org/10.18845/rfmk.v14i35.3154

Morales, C. and Villegas, B., 2012. Mora (Rubus glaucus Benth). En: Fischer, G. ed. Manual para el cultivo de frutales en el trópico. Bogotá: Produmedios. pp. 728-754.

Moreno-Medina, B.L. y Casierra-Posada, F., 2021. Caracterización de especies de mora (Rubus sp.) cultivadas en los altiplanos tropicales. En: Fischer, G., Miranda, D., Magnitskiy, S., Balaguera-López, H.E. and Molano, Z. eds. Avances en el cultivo de las berries en el trópico. Bogotá: SCCH (Sociedad Colombiana de Ciencias Hortícolas). pp. 102-112. https://doi.org/10.17584/IBerries

Obrador-Olán, J.J., García-López, E., Almeyda-Santos, L.E., Castelán-Estrada, M. and Carrillo-Ávila, E., 2019. Weeds in a sugar cane soil cultivated with Crotalaria juncea. Planta Daninha, 37, pp. 1-10. https://doi.org/10.1590/s0100-83582019370100002

Pakeman, R., Brooker, R., Karley, A., Newton, A., Mitchell, C., Hewison, R., Pollenus, J., Guy, D. and Schöb, C., 2019. Increased crop diversity reduces the functional space available for weeds. Weed Research, 60(2), pp. 121-131. https://doi.org/10.1111/wre.12393

Pielou, E.C., 1969. An introduction to mathematical ecology. New York: Wiley.

Pielou, E.C., 1975. Mathematical ecology. New York: John Wiley and Sons Inc.

Plaza, G. and Pedraza, M., 2007. Reconocimiento y caracterización ecológica de la flora arvense asociada al cultivo de uchuva. Agronomía Colombiana, 25(2), pp. 306-313. http://www.redalyc.org/articulo.oa?id=180320296013

Pratibha, G., Rao, K.V., Srinivas, I., Raju, B.M.K., Shanker, A.K., Madhavi, M., Indoria, A.K., Rao, M.S., Murthy, K., Reddy, K.S., Rao, C.S., Biswas, A.K. and Chaudhari, S.K., 2021. Weed shift and community diversity in conservation and conventional agriculture systems in pigeonpea-castor systems under rainfed semi-arid tropics. Soil and Tillage Research, 212, pp. 105075. https://doi.org/10.1016/j.still.2021.105075

Putniece, G., Augšpole, I. and Romanova, I., 2022. Population of weeds in a plantation of red raspberries (Rubus idaeus L.). Proceedings of the Latvian Academy of Sciences. Section B, 76(4), pp. 551-554. https://doi.org/10.2478/prolas-2022-0085

Quijano, M., Sierra, J., Gaviria, B., Navarro, R., Castaño, M., Sánchez, D., Marín, D., Arcila, K. and Rojas, J., 2019. Historia vida y poderes de una especie invasora: estrategia para su control y manejo. Antioquia: Fondo Editorial Universidad Católica del Oriente, Cornare. https://repositorio.uco.edu.co/handle/20.500.13064/915

Ramesh, K., Matloob, A., Aslam, F., Florentine, S. and Chauhan, B., 2017. Weeds in a changing climate: Vulnerabilities, consequences, and implications for future weed management. Frontiers in Plant Science, 8(2), pp. 1-12. https://doi.org/10.3389/fpls.2017.00095

Ramos, E., Sol, A., Guerrero, A., Obrador, J. and Carrillo, E., 2011. Efecto de Arachis pintoi sobre las arvenses asociadas al plátano macho (Musa AAB), Cárdenas, Tabasco, México. Agronomía Mesoamericana, 22(1), pp. 51-62. https://www.redalyc.org/articulo.oa?id=43721202007

Scursoni, A., Cortada, A., Rezzano, C., Martínez, E., Vercelli, F., Ancalao, M. and Cobelo, C., 2013. The effect of weeding time on raspberry (Rubus idaeus L.) crops yield and weed community in Rio Negro Province, Argentina. Crop Protection, 44, pp. 147-151. https://doi.org/10.1016/j.cropro.2012.11.004

SIOC (Sistema de Información de Gestión y Desempeño de las Organizaciones de Cadenas)., 2020. Cadena productiva de la mora. Bogotá: Dirección de Cadenas Agrícolas y Forestales, Ministerio de Agricultura y Desarrollo Rural. https://sioc.minagricultura.gov.co/Mora/Documentos/2020-06-30%20Cifras%20Sectoriales.pdf

Stefanowicz, A., Stanek, M., Nobis, M. and Zubek, S., 2017. Few effects of invasive plants Reynoutria japonica, Rudbeckia laciniata and Solidago gigantea on soil physical and chemical properties. Science of the Total Environment, 574, pp. 938-946. https://doi.org/10.1016/j.scitotenv.2016.09.120

Tessema, T., Lema, Y. and Admasu, B., 1999. Qualitative and quantitative determination of weeds in tef in West Shewa Zone. Arem (Ethiopia), 4, pp. 46-60. https://agris.fao.org/search/en/providers/122600/records/64722d4c2c1d629bc97899ae

Travlos, I.S., Cheimona, N., Roussis, I. and Bilalis, D.J., 2018. Weed-species abundance and diversity indices in relation to tillage systems and fertilization. Frontiers in Environmental Science, 6, p.11. https://doi.org/10.3389/fenvs.2018.00011

Trognitz, F., Hackl, E., Widhalm, S. and Sessitsch, A., 2016. The role of plant–microbiome interactions in weed establishment and control. FEMS Microbiology Ecology, 92(10), pp.fiw138. https://doi.org/10.1093/femsec/fiw138

Valdez, C.G., Guzmán, M.A., Valdés, A., Forougbakhch, R., Alvarado, M.A. and Rocha, A., 2018. Estructura y diversidad de la vegetación en un matorral espinoso prístino de Tamaulipas, México. Revista de Biología Tropical, 66(4), pp. 1674-1682. https://doi.org/10.15517/rbt.v66i4.32135

Wang, R., Dai, T., Quan, G. and Zhang, J., 2015. Changes in soil physico-chemical properties, enzyme activities and soil microbial communities under Mimosa pudica invasion. Allelopathy Journal, 36(1), pp. 15-24. https://www.cabidigitallibrary.org/doi/full/10.5555/20153342225

Zaller, J.G., 2004. Ecology and non-chemical control of Rumex crispus and R. obtusifolius (Polygonaceae): A review. Weed Research, 44(6), pp. 414-432. https://doi.org/10.1111/j.1365-3180.2004.00416.x

Zohaib, A., Abbas, T. and Tabassum, T., 2016. Weeds cause losses in field crops through allelopathy. Notulae Scientia Biologicae, 8(1), pp. 47-56. https://doi.org/10.15835/nsb819752




URN: http://www.revista.ccba.uady.mx/urn:ISSN:1870-0462-tsaes.v28i2.58685

DOI: http://dx.doi.org/10.56369/tsaes.5868



Copyright (c) 2025 Enrique Quevedo García, Giovanni Orlando Cancino Escalante, Luis Roberto Sanchéz Montaño

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.