Biotic and abiotic factors determining the presence of arbuscular mycorrhizal fungi in tropical agroecosystems of Tabasco, Mexico

Juan David Ricárdez Pérez, Ulises Rodríguez Robles, Gilberto Villanueva López, Hans van der Wal, Iván Oros Ortega, Luis Alberto Lara Pérez

Abstract


Background. Climate Change (CC) is a major threat to tropical biodiversity, with projections of up to 4.8 °C warming by the end of the century. Both natural ecosystems and agroecosystems will be affected, particularly soil biota. Arbuscular mycorrhizal fungi (AMF), symbionts associated with 90% of terrestrial plants, are highly sensitive to temperature, soil moisture, and edaphic properties, as well as intensive agricultural practices that degrade their communities. Tree presence in agroecosystems can create more favorable conditions for AMF development.  Objective. To evaluate the influence of tree cover, microclimatic variables, and soil properties on the composition and diversity of AMF communities in tropical agroecosystems of southeastern Mexico. Methodology. Microclimate, soil properties, tree cover, and AMF communities were compared across six agroecosystems (Acahual, Home Garden, Milpa, Pasture, Forest Plantation, and Conserved Vegetation) located in the Usumacinta Canyon Flora and Fauna Protection Area, Tabasco, México. Composite soil samples (0–30 cm) were collected for physical and chemical analyses and morphological characterization of AMF. Results. Significant differences were observed in air and soil humidity and temperature, as well as in sand and potassium content. Tree density was highest in Conserved Vegetation, while Acahual had the greatest diversity. AMF spore abundance did not vary significantly, but morphospecies richness did. Positive correlations were found between cation exchange capacity and organic matter with AMF spore abundance and richness, respectively. Soil moisture correlated negatively with richness, and these variables were linked to tree cover. Implications. These findings provide evidence for sustainable management strategies that incorporate trees into tropical agroecosystems, enhancing microclimatic regulation, soil quality, and AMF communities, thereby contributing to resilience against CC. Conclusion. The composition of AMF communities is indirectly affected by tree diversity by modifying the microclimates and soil properties of tropical agroecosystems.

Keywords


spore abundance; agroforestry systems; microclimatic conditions; soil properties.

Full Text:

PDF

References


Ahirwal, J., Kumari, S., Singh, A.K., Kumar, A. and Maiti, S.K., 2021. Changes in soil properties and carbon fluxes following afforestation and agriculture in tropical forest. Ecological Indicators, 123, pp. 107354. https://doi.org/10.1016/j.ecolind.2021.107354

Alcudia-Aguilar, A., Villanueva-López, G., Alayón-Gamboa, J.A., Nahed-Toral, J., Aryal, D.R., Casanova-Lugo, F., Ayala-Montejo, D., Martínez-Zurimendi, P., Jiménez-Ferrer, G., De la Cruz-López, C.A. and Medrano-Pérez, O.R., 2024. Plant species richness in agroforestry systems correlates to soil fertility in the humid tropic of Mexico. Agroforestry Systems, 98(4), pp.891–909. https://doi.org/10.1007/s10457-024-00961-4

Aldrich-Wolfe, L., Black, K. L., Hartmann, E. D. L., Shivega, W. G., Schmaltz, L. C., McGlynn, R. D., Johnson, P. G., Asheim Keller, R. J. and Vink, S. N., 2020. Taxonomic shifts in arbuscular mycorrhizal fungal communities with shade and soil nitrogen across conventionally managed and organic coffee agroecosystems. Mycorrhiza, 30, pp. 513-527. https://doi.org/10.1007/s00572-020-00967-7

Alguacil, M. d. M., Torres, M. P., Montesinos-Navarro, A. and Roldán, A., 2016. Soil characteristics driving arbuscular mycorrhizal fungal communities in semiarid Mediterranean soils. Applied and Environmental Microbiology, 82, pp. 3348-3356. https://doi.org/10.1128/AEM.03982-15

Álvarez-Lopeztello, J., del Castillo, R.F., Robles, C. and Hernández-Cuevas, L. V., 2019. Spore diversity of arbuscular mycorrhizal fungi in human-modified neotropical ecosystems. Ecological Research, 34(3), pp. 394–405. https://doi.org/10.1111/1440-1703.12004

Amf-philogeny, 2024. AMF species list and taxonomy. Disponible en: https://docs.google.com/spreadsheets/d/1vHHj9XtfIYj9B60L7UP4rUci8bJeolUP/edit#gid=1484552018 [Acceso 1 February 2024].

Ashraf, M., Zulkifli, R., Sanusi, R., Tohiran, K. A., Terhem, R., Moslim, R., Norhisham, A. R., Butt, A. A. and Azhar, B., 2018. Alley-cropping system can boost arthropod biodiversity and ecosystem functions in oil palm plantations. Agriculture, Ecosystems & Environment 260, pp. 19–26. https://doi.org/10.1016/j.agee.2018.03.017

Augusto, L. and Bo?a, A., 2022. Tree functional traits, forest biomass, and tree species diversity interact with site properties to drive forest soil carbon. Nature Communications, 13(1), pp.1097. https://doi.org/10.1038/s41467-022-28748-0

Avilez-López, T., Van Der Wal, H., Aldasoro-Maya, E.M. and Rodríguez-Robles, U., 2020. Home gardens’ agrobiodiversity and owners’ knowledge of their ecological, economic and socio-cultural multifunctionality: A case study in the lowlands of Tabasco, México. Journal of Ethnobiology and Ethnomedicine, 16(1), pp.1–13. https://doi.org/10.1186/s13002-020-00392-2

Babalola, B.J., Li, J., Willing, C.E., Zheng, Y., Wang, Y.-L., Gan, H.-Y., Li, X.-C., Wang, C., Adams, C.A., Gao, C. and Guo, L.-D., 2022. Nitrogen fertilization disrupts the temporal dynamics of arbuscular mycorrhizal fungal hyphae but not spore density and community composition in a wheat field. New Phytologist, 234, pp. 2057-2072. https://doi.org/10.1111/nph.18043

Bahru, T. and Ding, Y., 2020. Effect of stand density, canopy leaf area index and growth variables on Dendrocalamus brandisii (Munro) Kurz litter production at Simao District of Yunnan Province, Southwestern China. Global Ecology and Conservation, 23, pp.e01051. https://doi.org/10.1016/j.gecco.2020.e01051

Bainard, L. D., Klironomos, J. N. and Gordon, A. M., 2011. Arbuscular mycorrhizal fungi in tree-based intercropping systems: A review of their abundance and diversity. Pedobiologia, 54, pp. 57-61. https://doi.org/10.1016/j.pedobi.2010.11.001

Battisti, D. S. and Naylor, R. L., 2009. Historical warnings of future food insecurity with unprecedented seasonal heat. Science, 323, pp. 240-244. https://doi.org/10.1126/science.1164363

Begum, N., Qin, C., Ahanger, M. A., Raza, S., Khan, M. I., Ashraf, M., Ahmed, N. and Zhang, L., 2019. Role of arbuscular mycorrhizal fungi in plant growth regulation: implications in abiotic stress tolerance. Frontiers in Plant Science, 10, pp.1068. https://doi.org/10.3389/fpls.2019.01068

Bowles, T. M., Jackson, L. E., Loeher, M. and Cavagnaro, T. R., 2016. Ecological intensification and arbuscular mycorrhizas a meta?analysis of tillage and cover crop effects. Journal of Applied Ecology, 54, pp. 1785-1793.

Camargo, J. L. y Kapos, V., 1995. Complex edge effects on soil moisture and microclimate in central Amazonian forest. Journal of Tropical Ecology, 11, pp. 205-221. https://doi.org/10.1017/S026646740000866X

Casanova-Lugo, F., Villanueva-López, G., Alcudia-Aguilar, A., Nahed-Toral, J., Medrano-Pérez, O.R., Jiménez-Ferrer, G., Alayón-Gamboa, J.A. and Aryal, D.R., 2022. Effect of tree shade on the yield of Brachiaria brizantha grass in tropical livestock production systems in Mexico. Rangeland Ecology & Management, 80, pp. 31–38. https://doi.org/10.1016/j.rama.2021.09.006

Chao, A. and Jost, L., 2012. Coverage-based rarefaction and extrapolation: standardizing samples by completeness rather than size. Ecology, 93, pp. 2533-2547. https://doi.org/10.1890/11-1952.1

Chatterjee, N., Ramachandran Nair, P.K., Chakraborty, S. and Nair, V.D., 2018. Changes in soil carbon stocks across the forest-agroforest-agriculture/pasture continuum in various agroecological regions: a meta-analysis. Agriculture, Ecosystems and Environment, 266, pp. 55-67. https://doi.org/10.1016/j.agee.2018.07.014

Cornut, I., Le Maire, G., Laclau, J. P., Guillemot, J., Mareschal, L., Nouvellon, Y. and Delpierre, N., 2021. Potassium limitation of wood productivity: a review of elementary processes and ways forward to modelling illustrated by eucalyptus plantations. Forest Ecology and Management, 494, pp.119275 https://doi.org/10.1016/j.foreco.2021.119275

Cotton, T. E. A., 2018. Arbuscular mycorrhizal fungal communities and global change: an uncertain future. FEMS Microbiology Ecology, 94, pp.fiy179. https://doi.org/10.1093/FEMSEC/FIY179

Davison, J., Moora M., Öpik M., Adholeya A., Ainsaar L., Bâ, A., Burla S., Diedhiou A.G., Hiiesalu, I., Jairus, T., Johnson N.C., Kane, A., Koorem, K., Kochar, M., Ndiaye, C., Pärtel M., Reier, Ü., Saks, Ü., Singh R., Vasar, M. and Zobel M., 201. Global assessment of arbuscular mycorrhizal fungus diversity reveals very low endemism. Science, 349(6251), pp. 970-973. https://doi.org/10.1126/science.aad1161

Dierks, J., Blaser-Hart, W. J., Gamper, H. A., Betserai Nyoka, I., Barrios, E. and Six, J., 2021. Trees enhance abundance of arbuscular mycorrhizal fungi, soil structure, and nutrient retention in low-input maize cropping systems. Agriculture, Ecosystems and Environment, 318, pp.107487. https://doi.org/10.1016/j.agee.2021.107487

Fisher, M. A. and Fulé, P. Z., 2004. Changes in forest vegetation and arbuscular mycorrhizae along a steep elevation gradient in Arizona. Forest Ecology and Management, 200, pp. 293-311. https://doi.org/10.1016/j.foreco.2004.07.003

Frenne, P. D., Zellweger, F., Rodríguez-Sánchez, F., Scheffers, B. R., Hylander, K., Luoto, M., Vellend, M., Verheyen, K. and Lenoir, J., 2019. Global buffering of temperatures under forest canopies. Nature Ecology and Evolution, 3, pp. 744-749. https://doi.org/10.1038/s41559-019-0842-1

Furze, J. R., Martin, A. R., Nasielski, J., Thevathasan, N. V., Gordon, A. M. and Isaac, M. E., 2017. Resistance and resilience of root fungal communities to water limitation in a temperate agroecosystem. Ecology and Evolution, 7, pp. 3443-3454. https://doi.org/10.1002/ece3.2900

Gerdemann, J. and Nicholson, T., 1963. Spores of mycorrhizal Endogone species extracted from soil by wet sieving and decanting. Transactions of the British Mycological Society, 46, pp. 235–244.

Gosling, P., Mead, A., Proctor, M., Hammond, J.P. and Bending, G.D., 2013. Contrasting arbuscular mycorrhizal communities colonizing different host plants show a similar response to a soil phosphorus concentration gradient. New Phytologist, 198, pp. 546–556. https://doi.org/10.1111/nph.12169

Grünfeld, L., Wulf, M., Rillig, M.C., Manntschke, A. and Veresoglou, S.D., 2019. Neighbours of arbuscular-mycorrhiza associating trees are colonized more extensively by arbuscular mycorrhizal fungi than their conspecifics in ectomycorrhiza dominated stands. New Phytologist, 227, pp. 10–13. https://doi.org/10.1111/nph.16377

Gryndler, M., Hršelová, H., Cajthaml, T., Havránková, M., ?ezá?ová, V., Gryndlerová, H. and Larsen, J., 2009. Influence of soil organic matter decomposition on arbuscular mycorrhizal fungi in terms of asymbiotic hyphal growth and root colonization. Mycorrhiza, 19(4), pp.255–266. https://doi.org/10.1007/s00572-008-0217-y

Han, Y., Feng, J., Han, M. and Zhu, B., 2020. Responses of arbuscular mycorrhizal fungi to nitrogen addition: A meta-analysis. Global Change Biology, 26, pp. 7229–7241. https://doi.org/10.1111/gcb.15369

Hardwick, S.R., Toumi, R., Pfeifer, M., Turner, E.C., Nilus, R. and Ewers, R.M., 2015. The relationship between leaf area index and microclimate in tropical forest and oil palm plantation: Forest disturbance drives changes in microclimate. Agricultural and Forest Meteorology, 201, pp. 187–195. https://doi.org/10.1016/j.agrformet.2014.11.010

Huang, X., Shi, Z.H., Zhu, H.D., Zhang, H.Y., Ai, L. and Yin, W., 2016. Soil moisture dynamics within soil profiles and associated environmental controls. Catena, 136, pp.189–196. https://doi.org/10.1016/j.catena.2015.01.014

Ismaeel, A., Tai, A.P.K., Santos, E.G., Maraia, H., Aalto, I., Altman, J., Doležal, J., Lembrechts, J.J., Camargo, J.L., Aalto, J., Sam, K, Avelino do Nascimento, L.C., Kopecký, M., Svátek, M., Nunes, M.H., Matula, R., Plichta, R., Abera, T. and Maeda, E.E., 2024. Patterns of tropical forest understory temperatures. Nature Communications, 15, pp.549. https://doi.org/10.1038/s41467-024-44734-0

Jansa, J., Erb, A., Oberholzer, H.R., Šmilauer, P. and Egli, S., 2014. Soil and geography are more important determinants of indigenous arbuscular mycorrhizal communities than management practices in Swiss agricultural soils. Molecular Ecology, 23(8), pp.2118–2135. https://doi.org/10.1111/mec.12706

Jemo, M., Dhiba, D., Hashem, A., Abd Allah, E.F., Alqarawi, A.A. and Tran, L.S.P., 2018. Mycorrhizal fungal community structure in tropical humid soils under fallow and cropping conditions. Scientific Reports, 8(1), pp.17061. https://doi.org/10.1038/s41598-018-34736-6

Johnson, N.C., Angelard, C., Sanders, I.R. and Kiers, E.T., 2013. Predicting community and ecosystem outcomes of mycorrhizal responses to global change. Ecology Letters, 16, pp. 140–153. https://doi.org/10.1111/ele.12085

Johnson, N.C., Wilson, G.W.T., Wilson, J.A., Miller, R.M. and Bowker, M.A., 2015. Mycorrhizal phenotypes and the law of the minimum. New Phytologist, 205, pp. 1473–1484. https://doi.org/10.1111/nph.13172

Johnson, N.C. y Gibson, K.S., 2021. Understanding multilevel selection may facilitate management of arbuscular mycorrhizae in sustainable agroecosystems. Frontiers in Plant Science, 11, pp.627345. https://doi.org/10.3389/fpls.2020.627345

Lara-Pérez, L.A., Villanueva-López, G., Oros-Ortega, I., Aryal, D.R., Casanova-Lugo, F. and Ghimire, R., 2023. Seasonal variation of arthropod diversity in agroforestry systems in the humid tropics of Mexico. Arthropod-Plant Interactions, 17(6), pp.799–810. https://doi.org/10.1007/s11829-023-10001-0

Liu, M., Zheng, R., Bai, S., Bai, Y. and Wang, J., 2016. Slope aspect influences arbuscular mycorrhizal fungus communities in arid ecosystems of the Daqingshan Mountains, Inner Mongolia, North China. Mycorrhiza, 27(3), pp.189–200. https://doi.org/10.1007/s00572-016-0739-7

López-Santiago, J.G., Villanueva-López, G., Casanova-Lugo, F., Aryal, D.R. and Pozo-Leyva, D., 2023. Livestock systems with scattered trees in paddocks reduce soil CO2 fuxes compared to grass monoculture in the humid tropics. Agroforestry Systems, 97, pp. 209-221. https://doi.org/10.1007/s10457-022-00799-8

Lu, N., Xu, X., Wang, P., Zhang, P., Ji, B. and Wang, X., 2019. Succession in arbuscular mycorrhizal fungi can be attributed to a chronosequence of Cunninghamia lanceolata. Scientific Reports, 9(1), pp.18057. https://doi.org/10.1038/s41598-019-54452-z

Lu, X.H., Zang, R.G. and Huang, J.H., 2015. Relationships between community level functional traits of trees and seedlings during secondary succession in a tropical lowland rainforest. PLoS ONE, 10(7), pp.e0132849. https://doi.org/10.1371/journal.pone.0132849

Maitra, P., Zheng, Y., Chen, L., Wang, Y.L., Ji, N.N., Lü, P.P., Gan, H.Y., Li, X.C., Sun, X., Zhou, X.H. and Guo, L.D. 2019. Effect of drought and season on arbuscular mycorrhizal fungi in a subtropical secondary forest. Fungal Ecology, 41, pp. 107–115. https://doi.org/10.1016/j.funeco.2019.04.005

Martius, C., Höfer, H., García, M.V.B., Römbke, J., Förster, B. and Hanagarth, W., 2004. Microclimate in agroforestry systems in central Amazonia: Does canopy closure matter to soil organisms? Agroforestry Systems, 60(3), pp.291–304. https://doi.org/10.1023/B:AGFO.0000024419.20709.6c

Montiel-Rozas, M. del M., López-García, Á., Madejón, P. and Madejón, E., 2017. Native soil organic matter as a decisive factor to determine the arbuscular mycorrhizal fungal community structure in contaminated soils. Biology and Fertility of Soils, 53(3), pp.327–338. https://doi.org/10.1007/s00374-017-1181-5

Muchane, M.N., Sileshi, G.W., Gripenberg, S., Jonsson, M. and Barrios, E., 2020. Agroforestry boosts soil health in the humid and sub-humid tropics: A Meta-Analysis. Agriculture, Ecosystems and Environment, 295, pp. 106899. https://doi.org/10.1016/j.agee.2020.106899

Ngaba, M.J.Y., Mgelwa, A.S., Gurmesa, G.A., Uwiragiye, Y., Zhu, F., Qiu, Q., Fang, Y., Hu, B. and Rennenberg, H., 2024. Meta-analysis unveils differential effects of agroforestry on soil properties in different zonobiomes. Plant and Soil, 496, pp. 589–607. https://doi.org/10.1007/s11104-023-06385-w

Nair, P.K.R., M., K.B. and Vimala, D.M., 2021. An introduction to agroforestry. Four decades of scientific developments. 2nd ed. Switzerland: Springer Cham, 666 p. https://doi.org/https://doi.org/10.1007/978-3-030-75358-0

Ngo Bieng, M.A., Delgado-Rodríguez, D., Vilchez-Mendoza, S., López-Sampson, A., García, E., Sepúlveda, N. y Somarriba, E., 2022. Tree diversity in a tropical agricultural-forest mosaic landscape in Honduras. Scientific Reports, 12(1), pp.18544. https://doi.org/10.1038/s41598-022-21280-7

Ochoa-Gaona, S., Zamora-Cornelio, L.F., Cabrera-Pérez, S., González-Valdivia, N.A., Pérez Hernández, I. y López Moreno, V., 2012. Flora leñosa útil de la sierra de Tenosique, Tabasco, México. Tapachula, Chiapas, México: ECOSUR.

Oehl, F., Laczko, E., Bogenrieder, A., Stahr, K., Bösch, R., van der Heijden, M. and Sieverding, E., 2010. Soil type and land use intensity determine the composition of arbuscular mycorrhizal fungal communities. Soil Biology and Biochemistry, 42, pp. 724–738. https://doi.org/10.1016/j.soilbio.2010.01.006

Oliver, T.H. and Morecroft, M.D., 2014. Interactions between climate change and land use change on biodiversity: attribution problems, risks, and opportunities. WIREs Climate Change, 5, pp. 317–335. https://doi.org/10.1002/wcc.271

Olsen, S.R., Cole, C.V., Watanabe, F.S. and Dean, L., 1954. Estimation of available phosphorus in soils by extraction with sodium bicarbonate. USDA Circular No. 939. Washington, DC, USA: US Government Printing Office.

Oorts, K., Vanlauwe, B. and Merckx, R., 2003. Cation exchange capacities of soil organic matter fractions in a Ferric Lixisol with different organic matter inputs. Agriculture, Ecosystems and Environment, 100(2–3), pp.161–171. https://doi.org/10.1016/S0167-8809(03)00190-7

Pivato, B., Offre, P., Marchelli, S., Barbonaglia, B., Mougel, C., Lemanceau, P. and Berta, G., 2009. Bacterial effects on arbuscular mycorrhizal fungi and mycorrhiza development as influenced by the bacteria, fungi, and host plant. Mycorrhiza, 19(2), pp.81–90. https://doi.org/10.1007/s00572-008-0205-2

Polo-Marcial, M.H., Lara-Perez, L.A., Goto, B.T., Margarito-Vista, X. and Andrade-Torres, A., 2022. Glomeromycota in Mexico, a country with very high richness. Sydowia, 74, pp.33–63. https://doi.org/10.12905/0380.sydowia74-2021-0033

Reyes, H.A., Ferreira, P.F.A., Silva, L.C., Costa, M.G., Nobre, C.P. and Gehring, C., 2019. Arbuscular mycorrhizal fungi along secondary forest succession at the eastern periphery of Amazonia: seasonal variability and impacts of soil fertility. Applied Soil Ecology, 136, pp. 1–10. https://doi.org/10.1016/j.apsoil.2018.12.013

Ricárdez-Pérez, J.D., Villanueva-López, G., Rodríguez-Robles, U., Van der Wall, H. Oros-Ortega, I. y Lara-Pérez, L.A., 2024. Composición de comunidades de hongos micorrízicos arbusculares en agroecosistemas del área de protección de flora y fauna Cañón del Usumacinta en Tabasco, México. Tropical and Subtropical Agroecosystems, 27(2), pp. 052. http://dx.doi.org/10.56369/tsaes.5126

Serrano, J., Marques da Silva, J. and Shahidian, S., 2014. Spatial and temporal patterns of potassium on grazed permanent pastures-management challenges. Agriculture, Ecosystems and Environment, 188, pp. 29–39. https://doi.org/10.1016/j.agee.2014.02.012

Shi, G., Yao, B., Liu, Y., Jiang, S., Wang, W., Pan, J., Zhao, X., Feng, H. and Zhou, H., 2017. The phylogenetic structure of AMF communities shifts in response to gradient warming with and without winter grazing on the Qinghai–Tibet Plateau. Applied Soil Ecology, 121, pp. 31–40. https://doi.org/10.1016/j.apsoil.2017.09.010

Silva, P.F., de Sousa Lima, J.R., Dantas Antonino, A.C., Souza, R., de Souza, E.S., Inácio Silva, J.R. and Alves, E.M., 2017. Seasonal patterns of carbon dioxide, water and energy fluxes over the Caatinga and grassland in the semi-arid region of Brazil. Journal of Arid Environments, 147, pp. 71–82. https://doi.org/10.1016/j.jaridenv.2017.09.003

Stürmer, S.L. and Siqueira, J.O., 2011. Species richness and spore abundance of arbuscular mycorrhizal fungi across distinct land uses in Western Brazilian Amazon. Mycorrhiza, 21(4), pp.255–267. https://doi.org/10.1007/s00572-010-0330-6

Tedersoo, L., Bahram, M., Põlme, S., Kõljalg, U., Yorou, N.S., Wijesundera, R., Villareal, L. and Vasco-Palacios, A.M., 2014. Disentangling global soil fungal diversity. Science, 346, pp. 1079–1088. https://doi.org/10.1126/science.aaa1185

Tymen, B., Vincent, G., Courtois, E.A., Heurtebize, J., Dauzat, J., Marechaux, I. and Chave, J., 2017. Quantifying micro-environmental variation in tropical rainforest understory at landscape scale by combining airborne LiDAR scanning and a sensor network. Annals of Forest Science, 74(2), 32. https://doi.org/10.1007/s13595-017-0628-z

Veresoglou, S.D., Wulf, M. and Rillig, M.C., 2017. Facilitation between woody and herbaceous plants that associate with arbuscular mycorrhizal fungi in temperate European forests. Ecology and Evolution, 7, pp. 1181–1189. https://doi.org/10.1002/ece3.2757

Villanueva-López, G., Martínez-Zurimendi, P., Ramírez-Avilés, L., Aryal, D. R. y Casanova-Lugo, F., 2016. Live fences reduce the diurnal and seasonal fluctuations of soil CO2 emissions in livestock systems. Agronomy for Sustainable Development, 36(1), pp.23. https://doi.org/10.1007/s13593-016-0358-x

Villanueva-López, G., Lara-Pérez, L.A., Oros-Ortega, I., Ramírez-Barajas, P.J., Casanova-Lugo, F., Ramos-Reyes, R. and Aryal, D.R., 2019. Diversity of soil macro-arthropods correlates to the richness of plant species in traditional agroforestry systems in the humid tropics of Mexico. Agriculture, Ecosystems and Environment, 286, pp.106658. https://doi.org/10.1016/j.agee.2019.106658

Wang, B. and Qiu, Y.L., 2006. Phylogenetic distribution and evolution of mycorrhizas in land plants. Mycorrhiza, 16, pp. 299–363. https://doi.org/10.1007/s00572-005-0033-6

Van der Wiel, K. y Bintanja, R., 2021. Contribution of climatic changes in mean and variability to monthly temperature and precipitation extremes. Communications Earth and Environment, 2, pp.1. https://doi.org/10.1038/s43247-020-00077-4

Williams, J.J. and Newbold, T., 2020. Local climatic changes affect biodiversity responses to land use: A review. Diversity and Distributions, 26, pp. 76–92. https://doi.org/10.1111/ddi.12999




URN: http://www.revista.ccba.uady.mx/urn:ISSN:1870-0462-tsaes.v28i3.58631

DOI: http://dx.doi.org/10.56369/tsaes.5863



Copyright (c) 2025 Juan David Ricárdez Pérez

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.