DYNAMIC DISTRIBUTION OF Coffea arabica And C. canephora IN RESPONSE TO CLIMATE CHANGE IN THREE REGIONS OF MEXICO

Jesús Guerrero-Carrera, José Alvaro Hernández-Flores, José Luis Jaramillo-Villanueva

Abstract


Background: The coffee sector is fundamental in the economic, social, and environmental aspects of coffee-producing regions in Mexico. However, climate change is altering the optimal agroclimatic conditions for the cultivation of Coffea arabica and C. canephora, threatening future production. Given the regional variability of these impacts, it is necessary to identify how climate change will affect the suitability for production in specific regions. Studies focused on species distribution provide key tools to gauge these impacts and issue recommendations aimed at adapting to climate change. Objective: To assess the potential impact of climate change on the production of Coffea arabica and C. canephora, using a species distribution approach in the northeastern region of Puebla, the mountains of Veracruz, and the Mazatec region of Oaxaca. Materials and Methods: This study was conducted using a species distribution approach, with modeling carried out through MaxEnt software to project the potential distribution of the species. Future climate scenarios SSP126 and SSP585 for the period 2041–2060 were evaluated. Results and Discussion: The results suggest significant changes in the distribution of both species. For C. arabica, there is a general trend of reduction in optimal areas, with notable regional variations. C. canephora, on the other hand, shows a different response, with some areas showing an increase in the distribution of this species. The most influential variables in the distribution of both species were precipitation, elevation, and wind speed. Implications: If future agroclimatic conditions favor the expansion of C. canephora, as projections suggest for some regions, a partial transition to this species could be considered as an adaptation strategy. Conclusions: The study concluded that climate change will significantly reduce the distribution of C. arabica and moderately favor C. canephora, with differentiated regional impacts. It is crucial to adjust management strategies according to each region to ensure the sustainability of coffee production.

Keywords


adaptation; scenarios; species; suitability; MaxEnt.

Full Text:

PDF

References


Alvarado, M.A., Lozano, F., Martínez, M.A. and Colmenero, A., 2006. Usos y destinos de los suelos en la región de Cuetzalan, Puebla, México. Investigaciones Geográficas, 59, pp. 43-58.

Baca, M., Läderach, P., Haggar, J., Schroth, G. and Ovalle, O., 2014. An Integrated Framework for Assessing Vulnerability to Climate Change and Developing Adaptation Strategies for Coffee Growing Families in Mesoamerica. PLoS ONE, 9(2), pp. e88463. https://doi.org/10.1371/journal.pone.0088463

Ballinas, M., Esperón-Rodríguez, M. and Barradas, V.L., 2015. Estimating evapotranspiration in the central mountain region of Veracruz, México. Bosque (Valdivia), 36(3), pp. 445-455. https://doi.org/10.4067/S0717-92002015000300011

Barbet?Massin, M., Jiguet, F., Albert, C.H. and Thuiller, W., 2012. Selecting pseudo?absences for species distribution models: How, where and how many? Methods in Ecology and Evolution, 3(2), pp. 327-338. https://doi.org/10.1111/j.2041-210X.2011.00172.x

Bilen, C., El Chami, D., Mereu, V., Trabucco, A., Marras, S. and Spano, D., 2022. A Systematic Review on the Impacts of Climate Change on Coffee Agrosystems. Plants, 12(1), pp. 102. https://doi.org/10.3390/plants12010102

Bracken, P., Burgess, P.J. and Girkin, N.T., 2023. Opportunities for enhancing the climate resilience of coffee production through improved crop, soil and water management. Agroecology and Sustainable Food Systems, 47(8), pp. 1125-1157. https://doi.org/10.1080/21683565.2023.2225438

Bunn, C., Läderach, P., Ovalle Rivera, O. and Kirschke, D., 2015. A bitter cup: Climate change profile of global production of Arabica and Robusta coffee. Climatic Change, 129(1-2), pp. 89-101. https://doi.org/10.1007/s10584-014-1306-x

Bunn, C., Läderach, P., Pérez Jimenez, J.G., Montagnon, C. and Schilling, T., 2015. Multiclass Classification of Agro-Ecological Zones for Arabica Coffee: An Improved Understanding of the Impacts of Climate Change. PLOS ONE, 10(10), pp. e0140490. https://doi.org/10.1371/journal.pone.0140490

Calvillo-Arriola, A.E. and Sotelo-Navarro, P.X., 2024. A step towards sustainability: Life cycle assessment of coffee produced in the indigenous community of Ocotepec, Chiapas, Mexico. Discover Sustainability, 5(1), pp. 17. https://doi.org/10.1007/s43621-024-00194-6

Campuzano-Duque, L.F. and Blair, M.W., 2022. Strategies for Robusta Coffee (Coffea canephora) Improvement as a New Crop in Colombia. Agriculture, 12(10), pp. 1576. https://doi.org/10.3390/agriculture12101576

Cassamo, C.T., Draper, D., Romeiras, M.M., Marques, I., Chiulele, R., Rodrigues, M., Stalmans, M., Partelli, F.L., Ribeiro-Barros, A. and Ramalho, J.C., 2023. Impact of climate changes in the suitable areas for Coffea arabica L. production in Mozambique: Agroforestry as an alternative management system to strengthen crop sustainability. Agriculture, Ecosystems & Environment, 346, pp. 108341. https://doi.org/10.1016/j.agee.2022.108341

Cerda-Ocaranza, M.G., Salgado-Mora, M.G., Aguirre-Cadena, J.F. and Chilel Pérez, N.D., 2023. Respuesta del café robusta (Coffea canephora) Pierre ex A. Froehner a diferentes manejos de sombra y fertilización, en el sur de Chiapas, México. Ciencia Latina Revista Científica Multidisciplinar, 7(1), pp. 5547-5565. https://doi.org/10.37811/cl_rcm.v7i1.4870

Chalchissa, F.B., Diga, G.M. and Tolossa, A.R., 2022. Modeling the responses of Coffee (Coffea arabica L.) distribution to current and future climate change in Jimma Zone, Ethiopia. SAINS TANAH - Journal of Soil Science and Agroclimatology, 19(1), pp. 19. https://doi.org/10.20961/stjssa.v19i1.54885

Comisión Nacional para el Conocimiento y Uso de la Biodiversidad (CONABIO), 2024. Cobertura de vegetación y uso de suelo de México 2018: Escala 1:250,000 [Archivo TIFF]. Geoportal de CONABIO.

Craparo, A.C.W., Van Asten, P.J.A., Läderach, P., Jassogne, L.T.P. and Grab, S.W., 2015. Coffea arabica yields decline in Tanzania due to climate change: Global implications. Agricultural and Forest Meteorology, 207, pp. 1-10. https://doi.org/10.1016/j.agrformet.2015.03.005

Cuervo-Robayo, A.P., Ureta, C., Gómez-Albores, M.A., Meneses-Mosquera, A.K., Téllez-Valdés, O. and Martínez-Meyer, E., 2020. One hundred years of climate change in Mexico. PLOS ONE, 15(7), pp. e0209808. https://doi.org/10.1371/journal.pone.0209808

DaMatta, F.M., Avila, R.T., Cardoso, A.A., Martins, S.C.V. and Ramalho, J.C., 2018. Physiological and Agronomic Performance of the Coffee Crop in the Context of Climate Change and Global Warming: A Review. Journal of Agricultural and Food Chemistry, 66(21), pp. 5264-5274. https://doi.org/10.1021/acs.jafc.7b04537

DaMatta, F.M., Ronchi, C.P., Maestri, M. and Barros, R.S., 2007. Ecophysiology of coffee growth and production. Brazilian Journal of Plant Physiology, 19(4), pp. 485-510. https://doi.org/10.1590/S1677-04202007000400014

Davis, A.P., Gole, T.W., Baena, S. and Moat, J., 2012. The Impact of Climate Change on Indigenous Arabica Coffee (Coffea arabica): Predicting Future Trends and Identifying Priorities. PLoS ONE, 7(11), pp. e47981. https://doi.org/10.1371/journal.pone.0047981

Elith, J., Phillips, S.J., Hastie, T., Dudík, M., Chee, Y.E. and Yates, C.J., 2011. A statistical explanation of MaxEnt for ecologists: Statistical explanation of MaxEnt. Diversity and Distributions, 17(1), pp. 43-57. https://doi.org/10.1111/j.1472-4642.2010.00725.x

Ferrão, M.A.G., Riva?Souza, E.M., Azevedo, C., Volpi, P.S., Fonseca, A.F.A., Ferrão, R.G., Montagnon, C. and Ferrão, L.F.V., 2024. Robust and smart: Inference on phenotypic plasticity of Coffea canephora reveals adaptation to alternative environments. Crop Science, pp. csc2.21298. https://doi.org/10.1002/csc2.21298

Fick, S.E. and Hijmans, R.J., 2017. WorldClim 2: New 1?km spatial resolution climate surfaces for global land areas. International Journal of Climatology, 37(12), pp. 4302-4315. https://doi.org/10.1002/joc.5086

Gabriel-Hernández, L. and Barradas, V.L., 2024. Panorama of Coffee Cultivation in the Central Zone of Veracruz State, Mexico: Identification of Main Stressors and Challenges to Face. Sustainability, 16(2), pp. 802. https://doi.org/10.3390/su16020802

García-Albarado, C., Gómez-Merino, F., Bruno-Rivera, A., Rosas-López, A., Servin-Juárez, R. and Muños-Márquez, R., 2018. Identificación de elementos identitarios en la región de las altas montañas de Veracruz. Agroproductividad, 11(8), pp. 95-100.

Gasperín-García, E.M., Platas-Rosado, D.E., Zetina-Córdoba, P., Vilaboa-Arroniz, J. and Dávila, F.M., 2022. Calidad de vida de los cafeticultores en las Altas Montañas de Veracruz, México. Agronomía Mesoamericana, pp. 50163. https://doi.org/10.15517/am.v34i1.50163

Guerrero-Carrera, J. and Hernández-Flores, J.A., 2024. Impacto del cambio climático en la producción de café en Veracruz bajo un enfoque Ricardiano. Ecosistemas y Recursos Agropecuarios, 11(2). https://doi.org/10.19136/era.a11n2.3896

Guerrero-Carrera, J., Jaramillo-Villanueva, J.L., Mora-Rivera, J., Bustamante-González, Á., Vargas-López, S. and Chulim-Estrella, N., 2020. Impacto del cambio climático sobre la producción de café. Tropical and Subtropical Agroecosystems, 23(71), pp. http://dx.doi.org/10.56369/tsaes.3288

Haggar, J., Soto, G., Casanoves, F. and Virginio, E.D.M., 2017. Environmental-economic benefits and trade-offs on sustainably certified coffee farms. Ecological Indicators, 79, pp. 330-337. https://doi.org/10.1016/j.ecolind.2017.04.023

Imbach, P., Fung, E., Hannah, L., Navarro-Racines, C.E., Roubik, D.W., Ricketts, T.H., Harvey, C.A., Donatti, C.I., Läderach, P., Locatelli, B. and Roehrdanz, P.R., 2017. Coupling of pollination services and coffee suitability under climate change. Proceedings of the National Academy of Sciences, 114(39), pp. 10438-10442. https://doi.org/10.1073/pnas.1617940114

Jaramillo-Villanueva, J.L., Guerrero-Carrera, J., Vargas-López, S. and Bustamante-González, Á., 2022. Percepción y adaptación de productores de café al cambio climático en Puebla y Oaxaca, México. Ecosistemas y Recursos Agropecuarios, 9(1). https://doi.org/10.19136/era.a9n1.3170

Jiménez, A.A., Marceleño Flores, S.M.L., González, O.N. and Vilchez, F.F., 2023. Potential Coffee Distribution in a Central-Western Region of Mexico. Ecologies, 4(2), pp. 269-287. https://doi.org/10.3390/ecologies4020018

Kath, J., Mittahalli Byrareddy, V., Mushtaq, S., Craparo, A. and Porcel, M., 2021. Temperature and rainfall impacts on robusta coffee bean characteristics. Climate Risk Management, 32, pp. 100281. https://doi.org/10.1016/j.crm.2021.100281

Läderach, P., Ramirez–Villegas, J., Navarro-Racines, C., Zelaya, C., Martinez–Valle, A. and Jarvis, A., 2017. Climate change adaptation of coffee production in space and time. Climatic Change, 141(1), pp. 47-62. https://doi.org/10.1007/s10584-016-1788-9

LaFevor, M.C., 2022. Characterizing Agricultural Diversity with Policy-Relevant Farm Typologies in Mexico. Agriculture, 12(9), pp. 1315. https://doi.org/10.3390/agriculture12091315

López-García, F.J., Escamilla-Prado, E., Zamarripa-Colmenero, A. and Cruz-Castillo, J.G., 2016. Producción y calidad en variedades de café (Coffea arabica L.) en Veracruz, México. Revista Fitotecnia Mexicana, 39(3), pp. 297-304. https://doi.org/10.35196/rfm.2016.3.297-304

Martins, M.Q., Rodrigues, W.P., Fortunato, A.S., Leitão, A.E., Rodrigues, A.P., Pais, I.P., Martins, L.D., Silva, M.J., Reboredo, F.H., Partelli, F.L., Campostrini, E., Tomaz, M.A., Scotti-Campos, P., Ribeiro-Barros, A.I., Lidon, F.J.C., DaMatta, F.M. and Ramalho, J.C., 2016. Protective Response Mechanisms to Heat Stress in Interaction with High [CO2] Conditions in Coffea spp. Frontiers in Plant Science, 7. https://doi.org/10.3389/fpls.2016.00947

Meinshausen, M., Nicholls, Z.R.J., Lewis, J., Gidden, M.J., Vogel, E., Freund, M., Beyerle, U., Gessner, C., Nauels, A., Bauer, N., Canadell, J.G., Daniel, J.S., John, A., Krummel, P.B., Luderer, G., Meinshausen, N., Montzka, S.A., Rayner, P.J., Reimann, S. and Wang, R.H.J., 2020. The shared socio-economic pathway (SSP) greenhouse gas concentrations and their extensions to 2500. Geoscientific Model Development, 13(8), pp. 3571-3605. https://doi.org/10.5194/gmd-13-3571-2020

Moguel, P. and Toledo, V.M., 1999. Café, luchas indígenas y sostenibilidad; el caso de México. Ecología política, 18, pp. 23-36.

Navidad-Murrieta, D.L., Marceleño-Flores, S.M.L., Nájera-González, A., Nájera-González, O. and Ramírez-Silva, J.P., 2023. Effects of Land Cover and Land Use Change on Nature's Contributions to People of the Shade-Grown Coffee Agroecosystem: An Analysis of Cumbres de Huicicila, Nayarit, Mexico. Conservation, 3(3), pp. 426-443. https://doi.org/10.3390/conservation3030029

Ovalle-Rivera, O., Läderach, P., Bunn, C., Obersteiner, M. and Schroth, G., 2015. Projected Shifts in Coffea arabica Suitability among Major Global Producing Regions Due to Climate Change. PLOS ONE, 10(4), pp. e0124155. https://doi.org/10.1371/journal.pone.0124155

Parada Molina, P.C., Cervantes Pérez, J., Ruiz Molina, V.E. and Cerdán Cabrera, C.R., 2020. Efectos de la variabilidad de la precipitación en la fenología del café: Caso zona cafetalera Xalapa-Coatepec, Veracruz, Mex. Ingeniería y Región, 24, pp. 61-71. https://doi.org/10.25054/22161325.2752

Phillips, S.J., Anderson, R.P. and Schapire, R.E., 2006. Maximum entropy modeling of species geographic distributions. Ecological Modelling, 190(3-4), pp. 231-259. https://doi.org/10.1016/j.ecolmodel.2005.03.026

Piato, K., Lefort, F., Subía, C., Caicedo, C., Calderón, D., Pico, J. and Norgrove, L., 2020. Effects of shade trees on robusta coffee growth, yield and quality. A meta-analysis. Agronomy for Sustainable Development, 40(6), pp. 38. https://doi.org/10.1007/s13593-020-00642-3

Radosavljevic, A. and Anderson, R.P., 2014. Making better Maxent models of species distributions: Complexity, overfitting and evaluation. Journal of Biogeography, 41(4), pp. 629-643. https://doi.org/10.1111/jbi.12227

Schroth, G., Läderach, P., Blackburn Cuero, D.S., Neilson, J. and Bunn, C., 2015. Winner or loser of climate change? A modeling study of current and future climatic suitability of Arabica coffee in Indonesia. Regional Environmental Change, 15(7), pp. 1473-1482. https://doi.org/10.1007/s10113-014-0713-x

Schroth, G., Laderach, P., Dempewolf, J., Philpott, S., Haggar, J., Eakin, H., Castillejos, T., Garcia Moreno, J., Soto Pinto, L., Hernandez, R., Eitzinger, A. and Ramirez-Villegas, J., 2009. Towards a climate change adaptation strategy for coffee communities and ecosystems in the Sierra Madre de Chiapas, Mexico. Mitigation and Adaptation Strategies for Global Change, 14(7), pp. 605-625. https://doi.org/10.1007/s11027-009-9186-5

SIAP, 2023. Escenario mensual de productos agroalimentarios: Café cereza. CDMX: Servicio de Información Agroalimentaria y Pesquera. Obtenido de www.gob.mx/siap

Siles, P., Cerdán, C.R. and Staver, C., 2022. Smallholder Coffee in the Global Economy—A Framework to Explore Transformation Alternatives of Traditional Agroforestry for Greater Economic, Ecological, and Livelihood Viability. Frontiers in Sustainable Food Systems, 6, pp. 808207. https://doi.org/10.3389/fsufs.2022.808207




URN: http://www.revista.ccba.uady.mx/urn:ISSN:1870-0462-tsaes.v28i2.58225

DOI: http://dx.doi.org/10.56369/tsaes.5822



Copyright (c) 2025 Jesús Guerrero Carrera, José Alvaro Hernández Flores, José Luis Jaramillo Villanueva

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.