ANTIOXIDANT ACTIVITY AND INHIBITION OF ACETYLCHOLINESTERASE OF INSECT-ASSOCIATED FUNGI FROM THE CLOUD FOREST OF CENTRAL VERACRUZ, MEXICO
Abstract
Keywords
Full Text:
PDFReferences
Apak, R., Güçlü, K., Özyürek, M. and Karademir, S.E., 2004. Novel total antioxidant capacity index for dietary polyphenols and vitamins C and E, using their cupric ion reducing capability in the presence of neocuproine: CUPRAC method. Journal of Agricultural and Food Chemistry, [online] 52(26), pp.7970–7981. https://doi.org/10.1021/JF048741X
Bissett, J., 1979. Paecilomyces tenuipes. Fungi Canadenses, 158, pp.1–2.
Castro-Pérez, S.M., González-Marín, R., Castaño-Zapata, J. and Sanjuán, T., 2013. Evaluación de medios de cultivo para inducir esporulación de Isaria tenuipes Peck. Agronomy, 21(1), pp.19–25.
Chacón, S. and Guzmán, G., 1995. Observations on the phenology of ten fungal species in the subtropical forests at Xalapa, Mexico. Mycological Research, 99(1), pp.54–56. https://doi.org/10.1016/S0953-7562(09)80316-X
Chang, C.C., Yang, M.H., Wen, H.M. and Chern, J.C., 2020. Estimation of total flavonoid content in propolis by two complementary colorimetric methods. Journal of Food and Drug Analysis, [online] 10(3), p.3. https://doi.org/10.38212/2224-6614.2748
Chhetri, D.R., Chhetri, A., Shahi, N., Tiwari, S., Karna, S.K.L., Lama, D. and Pokharel, Y.R., 2020. Isaria tenuipes Peck, an entomopathogenic fungus from Darjeeling Himalaya: Evaluation of in-vitro antiproliferative and antioxidant potential of its mycelium extract. BMC Complementary Medicine and Therapies, [online] 20(1), p.185. https://doi.org/10.1186/S12906-020-02973-W
Chiriví, J., Danies, G., Sierra, R., Schauer, N., Trenkamp, S., Restrepo, S. and Sanjuan, T., 2017. Metabolomic profile and nucleoside composition of Cordyceps nidus sp. nov. (Cordycipitaceae): A new source of active compounds. PloS One, [online] 12(6), p.e0179428. https://doi.org/10.1371/JOURNAL.PONE.0179428
Coolen, S., der-Molen Magda, R. Van and Welte, C.U., 2022. The secret life of insect-associated microbes and how they shape insect-plant interactions. FEMS Microbiology Ecology, [online] 98(9), pp.1-15. https://doi.org/10.1093/FEMSEC/FIAC083
Couttolenc, A., Medina, M.E., Trigos, Á. and Espinoza, C., 2022. Antioxidant capacity of fungi associated with corals and sponges of the reef system of Veracruz, Mexico. Electronic Journal of Biotechnology, 55, pp.40–46. https://doi.org/10.1016/J.EJBT.2021.11.002
D’Alessandro, C.P., Jones, L.R., Humber, R.A., López Lastra, C.C. and Sosa-Gomez, D.R., 2014. Characterization and phylogeny of Isaria spp. strains (Ascomycota: Hypocreales) using ITS1-5.8S-ITS2 and elongation factor 1-alpha sequences. Journal of Basic Microbiology, [online] 54 Suppl 1, pp.S21-S31. https://doi.org/10.1002/JOBM.201300499
Darriba, D., Taboada, G.L., Doallo, R. and Posada, D., 2012. jModelTest 2: more models, new heuristics and parallel computing. Nature Methods, [online] 9(8), p.772. https://doi.org/10.1038/NMETH.2109
Das, G., Shin, H.S., Leyva-Gómez, G., Prado-Audelo, M.L.D., Cortes, H., Singh, Y.D., Panda, M.K., Mishra, A.P., Nigam, M., Saklani, S., Chaturi, P.K., Martorell, M., Cruz-Martins, N., Sharma, V., Garg, N., Sharma, R. and Patra, J.K., 2021. Cordyceps spp.: A Review on Its Immune-Stimulatory and Other Biological Potentials. Frontiers in Pharmacology, [online] 11, p. 602364. https://doi.org/10.3389/FPHAR.2020.602364
Deaver, N.R., Hesse, C., Kuske, C.R. and Porras-Alfaro, A., 2019. Presence and distribution of insect-associated and entomopathogenic fungi in a temperate pine forest soil: An integrated approach. Fungal Biology, [online] 123(12), pp.864–874. https://doi.org/10.1016/J.FUNBIO.2019.09.006
Dong, C., Yang, T. and Lian, T., 2014. A comparative study of the antimicrobial, antioxidant, and cytotoxic activities of methanol extracts from fruit bodies and fermented mycelia of caterpillar medicinal mushroom Cordyceps militaris (Ascomycetes). International Journal of Medicinal Mushrooms, [online] 16(5), pp.485–495. https://doi.org/10.1615/INTJMEDMUSHROOMS.V16.I5.70
Gana, L.P., Etsassala, N.G.E.R. and Nchu, F., 2022. Interactive effects of water deficiency and endophytic Beauveria bassiana on plant growth, nutrient uptake, secondary metabolite contents, and antioxidant activity of Allium cepa L. Journal of Fungi, [online] 8(8), p.874. https://doi.org/10.3390/JOF8080874
Glare, T.R., Jackson, T.A. and Cisternas A., E., 1993. Beauveria vermiconia is an entomopathogenic fungus. Mycological Research, 97(3), pp.336–338. https://doi.org/10.1016/S0953-7562(09)81131-3
Glare, T.R., Reay, S.D., Nelson, T.L. and Moore, R., 2008. Beauveria caledonica is a naturally occurring pathogen of forest beetles. Mycological Research, [online] 112(3), pp.352–360. https://doi.org/10.1016/J.MYCRES.2007.10.015
Guzmán, G., Morón, M., Ramírez-Guillén, F. and Wolf, J., 2001. Entomogenous Cordyceps and related genera from Mexico with discussions on their hosts and new records. Mycotaxon, 78, pp.115–125.
Han, P., Zhang, X., Xu, D., Zhang, B., Lai, D. and Zhou, L., 2020. Metabolites from Clonostachys fungi and their biological activities. Journal of Fungi, [online] 6(4), pp.1–30. https://doi.org/10.3390/JOF6040229
Hodge, K., 2003. Clavicipitaceous Anamorphs. In: J.F.J. White, C.W. Bacon, N.L. Hywel-Jones and J.W. Spatafora, eds. Clavicipitalean fungi: Evolutionary biology, Chemistry, Biocontrol and Cultural Impacts. New York: Marcel Dekker Inc. pp.7–123.
Huang, Q.L., Siu, K.C., Wang, W.Q., Cheung, Y.C. and Wu, J.Y., 2013. Fractionation, characterization and antioxidant activity of exopolysaccharides from fermentation broth of a Cordyceps sinensis fungus. Process Biochemistry, 48(2), pp.380–386. https://doi.org/10.1016/J.PROCBIO.2013.01.001
Imoulan, A., Hussain, M., Kirk, P.M., El Meziane, A. and Yao, Y.J., 2017. Entomopathogenic fungus Beauveria: Host specificity, ecology and significance of morpho-molecular characterization in accurate taxonomic classification. Journal of Asia-Pacific Entomology, 20(4), pp.1204–1212. https://doi.org/10.1016/J.ASPEN.2017.08.015
Ingkaninan, K., Temkitthawon, P., Chuenchom, K., Yuyaem, T. and Thongnoi, W., 2003. Screening for acetylcholinesterase inhibitory activity in plants used in Thai traditional rejuvenating and neurotonic remedies. Journal of Ethnopharmacology, [online] 89(2–3), pp.261–264. https://doi.org/10.1016/j.jep.2003.08.008
Katoh, K., Rozewicki, J. and Yamada, K.D., 2019. MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Briefings in bioinformatics, [online] 20(4), pp.1160–1166. https://doi.org/10.1093/BIB/BBX108
Kenkhunthot, T. and Labua, S., 2020. Effect of crude extract from mycelium and fruiting body of Isaria tenuipes BCC 31640 on tyrosinase inhibition and antioxidant activities. Progress in Applied Science and Techology, 10(1), pp.320–10. https://ph02.tci-thaijo.org/index.php/past/article/view/242771
Kneževi?, A., Staji?, M., Sofreni?, I., Stanojkovi?, T., Milovanovi?, I., Teševi?, V. and Vukojevi?, J., 2018. Antioxidative, antifungal, cytotoxic and antineurodegenerative activity of selected Trametes species from Serbia. PloS One, [online] 13(8). https://doi.org/10.1371/JOURNAL.PONE.0203064
Kobayasi, Y., 1941. The genus Cordyceps and its allies. Science Reports of the Tokyo Bunrika Daigaku, Section B, 84, pp.53–260.
Krishna, K.V., Ulhas, R.S. and Malaviya, A., 2024. Bioactive compounds from Cordyceps and their therapeutic potential. Critical Reviews in Biotechnology, [online] 44(5), pp.753–773. https://doi.org/10.1080/07388551.2023.2231139
Lopez, A. and Garcia, J., 2002. Paecilomyces tenuipes Fungi: Hyphomycetes. Funga Veracruzana, 76, pp.1–4.
Lopez, A. and Garcia, J., 2009. Cordyceps dipterigena Ascomycetes: Clavicipetaceae. Funga Veracruzana, 87, pp.1–4.
Macuphe, N., Oguntibeju, O.O. and Nchu, F., 2021. Evaluating the endophytic activities of Beauveria bassiana on the physiology, growth, and antioxidant activities of extracts of lettuce (Lactuca sativa L.). Plants, [online] 10(6), p.1178 https://doi.org/10.3390/PLANTS10061178
Mata, G., Medel, R., Callac, P., Billette, C. and Garibay-Orijel, R., 2016. Primer registro de Agaricus bisporus (Basidiomycota, Agaricaceae) silvestre en Tlaxcala y Veracruz, México. Revista Mexicana de Biodiversidad, 87(1), pp.10–17. https://doi.org/10.1016/j.rmb.2016.01.019
Nikoh, N. and Fukatsu, T., 2000. Interkingdom host jumping underground: phylogenetic analysis of entomoparasitic fungi of the genus Cordyceps. Molecular Biology and Evolution, [online] 17(4), pp.629–638. https://doi.org/10.1093/OXFORDJOURNALS.MOLBEV.A026341
Olatunji, O.J., Tang, J., Tola, A., Auberon, F., Oluwaniyi, O. and Ouyang, Z., 2018. The genus Cordyceps: An extensive review of its traditional uses, phytochemistry and pharmacology. Fitoterapia, 129, pp.293–316.
https://doi.org/10.1016/J.FITOTE.2018.05.010
Pérez-Silva, E., 1978. Nuevos registros del género Cordyceps (Pyrenomycetes) en México. Boletín de la Sociedad Mexicana de Micología, 2(12), pp.19–25.
Pérez-Villamares, J.C., Burrola-Aguilar, C., Aguilar-Miguel, X., Sanjuan, T. and Jiménez-Sánchez, E., 2017. Nuevos registros de hongos entomopatógenos del género Cordyceps s. l. (Ascomycota: Hypocreales) del Estado de México. Revista Mexicana de Biodiversidad, 88(4), pp.773–783. https://doi.org/10.1016/j.rmb.2017.10.013
Prommaban, A., Sriyab, S., Marsup, P., Neimkhum, W., Sirithunyalug, J., Anuchapreeda, S., To-anun, C. and Chaiyana, W., 2022. Comparison of chemical profiles, antioxidation, inhibition of skin extracellular matrix degradation, and anti-tyrosinase activity between mycelium and fruiting body of Cordyceps militaris and Isaria tenuipes. Pharmaceutical Biology, [online] 60(1), pp.225–234. https://doi.org/10.1080/13880209.2021.2025255
Rabea, E.I., Nasr, H.M., Badawy, M.E.I. and El-Gendy, I.R., 2015. Toxicity of naturally occurring Bio-fly and chitosan compounds to control the Mediterranean fruit fly Ceratitis capitata (Wiedemann). Natural Product Research, [online] 29(5), pp.460–465. https://doi.org/10.1080/14786419.2014.948873
Rodrigues, J., Rocha, L.F.N., Martinez, J.M., Montalva, C., Humber, R.A. and Luz, C., 2022. Clonostachys spp., natural mosquito antagonists, and their prospects for biological control of Aedes aegypti. Parasitology research, [online] 121(10), pp.2979–2984. https://doi.org/10.1007/S00436-022-07630-4
Ronquist, F., Teslenko, M., Van Der Mark, P., Ayres, D.L., Darling, A., Höhna, S., Larget, B., Liu, L., Suchard, M.A. and Huelsenbeck, J.P., 2012. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology, [online] 61(3), pp.539–542. https://doi.org/10.1093/SYSBIO/SYS029
Samson, R.A., 1974. Paecilomyces and Some Allied Hyphomycete. Studies in Mycology, 6, pp.1-119.
Samson, R.A. and Evans, H.C., 1982. Two new Beauveria spp. from South America. Journal of Invertebrate Pathology, 39(1), pp.93–97. https://doi.org/10.1016/0022-2011(82)90162-8
Shrestha, B., Hyun, M.W., Oh, J., Han, J.-G., Lee, T.H., Cho, J.Y., Kang, H., Kim, S.H. and Sung, G.-H., 2014. Molecular evidence of a teleomorph-anamorph connection between Cordyceps scarabaeicola and Beauveria sungii and its implication for the systematics of Cordyceps sensu stricto. Mycoscience, 55(3), pp.231–239. https://doi.org/10.1016/j.myc.2013.09.004
Stamatakis, A. and Alachiotis, N., 2010. Time and memory efficient likelihood-based tree searches on phylogenomic alignments with missing data. Bioinformatics, [online] 26(12). https://doi.org/10.1093/BIOINFORMATICS/BTQ205
Stuart, A.K. da C., Furuie, J.L., Cataldi, T.R., Stuart, R.M., Zawadneak, M.A.C., Labate, C.A. and Pimentel, I.C., 2023. Metabolomics of the interaction between a consortium of entomopathogenic fungi and their target insect: Mechanisms of attack and survival. Pesticide Biochemistry and Physiology, [online] 191. https://doi.org/10.1016/J.PESTBP.2023.105369
Sun, Z.B., Li, S.D., Ren, Q., Xu, J.L., Lu, X. and Sun, M.H., 2020. Biology and applications of Clonostachys rosea. Journal of Applied Microbiology, [online] 129(3), pp.486–495. https://doi.org/10.1111/JAM.14625
Sung, G.-H., Hywel-Jones, N.L., Sung, J.-M., Jennifer Luangsa-ard, J.J., Shrestha, B., Spatafora, J.W., 2007. Phylogenetic classification of Cordyceps and the clavicipitaceous fungi. Studies in Mycology, 57, pp.5–59. https://doi.org/10.3114/sim.2007.57.01
Toledo, A. V., Virla, E., Humber, R.A., Paradell, S.L. and Lastra, C.C.L., 2006. First record of Clonostachys rosea (Ascomycota: Hypocreales) as an entomopathogenic fungus of Oncometopia tucumana and Sonesimia grossa (Hemiptera: Cicadellidae) in Argentina. Journal of Invertebrate Pathology, [online] 92(1), pp.7–10. https://doi.org/10.1016/J.JIP.2005.10.005
Del Valle Catania, M. and Robledo, G.L., 2019. Hongos patógenos de insectos. Cordyceps pseudomilitaris y C. takaomontana. In: G.J. Scrocchi and C. Szumik, eds. Universo Tucumano. [online] Tucumán: Fundación Miguel Lilo. pp.8–11. Available at: [Accessed 9 August 2024].
Vega, F.E., 2008. Insect pathology and fungal endophytes. Journal of Invertebrate Pathology, 98(3), pp.277–279. https://doi.org/10.1016/J.JIP.2008.01.008
Wang, J., Kan, L., Nie, S., Chen, H., Cui, S.W., Phillips, A.O., Phillips, G.O., Li, Y. and Xie, M., 2015. A comparison of chemical composition, bioactive components and antioxidant activity of natural and cultured Cordyceps sinensis. LWT - Food Science and Technology, 63(1), pp.2–7. https://doi.org/10.1016/J.LWT.2015.03.109
Watanabe, T., 2002. Pictorial atlas of soil and seed fungi: Morphologies of cultured fungi and key to species, second edition. [online], Second Edition. CRC Press, pp.504. https://doi.org/10.1201/9781420040821
Wu, J., Yu, X., Wang, X., Tang, L. and Ali, S., 2019. Matrine Enhances the Pathogenicity of Beauveria brongniartii Against Spodoptera litura (Lepidoptera: Noctuidae). Frontiers in Microbiology, [online] 10. https://doi.org/10.3389/FMICB.2019.01812
Yamaguchi, Y., Kagota, S., Nakamura, K., Shinozuka, K. and Kunitomo, M., 2001. Antioxidant activity of the extracts from fruiting bodies of cultured Cordyceps sinensis. Phytotherapy Research, 14(8), pp.647–649. https://doi.org/10.1002/1099-1573(200012)14:8<647::AID-PTR670>3.0.CO;2-W
Yang, Z., Wu, Q., Fan, J., Huang, J., Wu, Z., Lin, J., Bin, S. and Shu, B., 2021. Effects of the entomopathogenic fungus Clonostachys rosea on mortality rates and gene expression profiles in Diaphorina citri adults. Journal of Invertebrate Pathology, [online] 179, p.107539. https://doi.org/10.1016/J.JIP.2021.107539
Yokoyama, E., Yamagishi, K. and Hara, A., 2005. Heterothallism in Cordyceps takaomontana. FEMS Microbiology Letters, 250(1), pp.145–150. https://doi.org/10.1016/J.FEMSLE.2005.07.004
Zhang, Y., Zhang, X., Tian, Q., Ali, S., Tang, L. and Wu, J., 2022. Toxicological and biochemical description of synergism of Beauveria bassiana and Emamectin Benzoate against Megalurothrips usitatus (Bagrall). Journal of Fungi, [online] 8(9), p.916. https://doi.org/10.3390/JOF8090916
Zibaee, A., Bandani, A.R. and Tork, M., 2009. Effect of the entomopathogenic fungus, Beauveria bassiana, and its secondary metabolite on detoxifying enzyme activities and acetylcholinesterase (AChE) of the Sunn pest, Eurygaster integriceps (Heteroptera: Scutellaridae). Biocontrol Science and Technology, [online] 19(5), pp.485–498. https://doi.org/10.1080/09583150902847127
URN: http://www.revista.ccba.uady.mx/urn:ISSN:1870-0462-tsaes.v28i1.58008
DOI: http://dx.doi.org/10.56369/tsaes.5800
Copyright (c) 2025 Celeste Ricaño Rodríguez, Irene Lagunes Apodaca, Manuel Eusebio Medina López, Alan Couttolenc Aguirre, Rosario Medel Ortiz, César Espinoza Ramírez

This work is licensed under a Creative Commons Attribution 4.0 International License.