ANTIOXIDANT ACTIVITY AND INHIBITION OF ACETYLCHOLINESTERASE OF INSECT-ASSOCIATED FUNGI FROM THE CLOUD FOREST OF CENTRAL VERACRUZ, MEXICO

Celeste Ricaño-Rodriguez, Irene Lagunes, Manuel E. Medina, Alan Couttolenc, Rosario Medel-Ortiz, Cesar Espinoza

Abstract


Background. The central zone of Veracruz state in Mexico, includes areas of cloud forest in which some microbial interactions such as insect-associated fungi can be found, like Isaria, Paraisaria, Ophiocordyceps, Paecilomyces and Cordyceps genera. Objective. To isolate entomopathogenic fungi from the cloud forest of Veracruz and determine their antioxidant and acetylcholinesterase inhibitor potential. Methodology. Mycelium covered pupae and insects and those that present growth of fruiting bodies were collected. From these, six entomopathogenic fungi were purified and identified by morphology and sequencing of the ITS region of rDNA and maximum likelihood analysis and Bayesian inference. These strains were propagated by batch cultures using liquid fermentation. The culture broth and biomass were extracted to evaluate the antioxidant capacity, acetylcholinesterase inhibition and quantify flavonoids and total phenols. Results. A total of six different strains of insect-associated fungi were identified, including the genera Cordyceps, Beauveria and Clonosthachys. The strain CIMA_225, identified as Cordyceps takaomontana, represent the first report of these fungi associated with a Lepidoptera pupa in the ecological reserve La Martinica, Banderilla, Veracruz, Mexico. The C. takaomontana culture broth extract presented higher antioxidant capacity than the control antioxidant Trolox, against ABTS and DPPH radicals, this antioxidant capacity was related to the content of flavonoids and total phenols on the extract. Biomass extracts from samples CIMA_256 to CIMA 258, identified as Beauveria bassiana and culture broth extracts from CIMA_259 (Clonosthachys rosea) and CIMA_260 (C. rogersoniana) presented higher percentages of inhibition of acetylcholinesterase when compared to galantamine as positive control. Implications. These strains can be considered candidates for a deeper chemical-biological study and contribute to the knowledge of novel sources of bioactive fungal metabolites. Conclusion. The insect-associated fungi extracts reported in this work showed antioxidant and acetylcholinesterase inhibitory potential, therefore their metabolites can be used in biomedical and insecticidal applications. 

Keywords


Bioprospecting; Bioactive fungi; Cordyceps sp.; Beauveria sp.; Clonostachys sp.

Full Text:

PDF

References


Apak, R., Güçlü, K., Özyürek, M. and Karademir, S.E., 2004. Novel total antioxidant capacity index for dietary polyphenols and vitamins C and E, using their cupric ion reducing capability in the presence of neocuproine: CUPRAC method. Journal of Agricultural and Food Chemistry, [online] 52(26), pp.7970–7981. https://doi.org/10.1021/JF048741X

Bissett, J., 1979. Paecilomyces tenuipes. Fungi Canadenses, 158, pp.1–2.

Castro-Pérez, S.M., González-Marín, R., Castaño-Zapata, J. and Sanjuán, T., 2013. Evaluación de medios de cultivo para inducir esporulación de Isaria tenuipes Peck. Agronomy, 21(1), pp.19–25.

Chacón, S. and Guzmán, G., 1995. Observations on the phenology of ten fungal species in the subtropical forests at Xalapa, Mexico. Mycological Research, 99(1), pp.54–56. https://doi.org/10.1016/S0953-7562(09)80316-X

Chang, C.C., Yang, M.H., Wen, H.M. and Chern, J.C., 2020. Estimation of total flavonoid content in propolis by two complementary colorimetric methods. Journal of Food and Drug Analysis, [online] 10(3), p.3. https://doi.org/10.38212/2224-6614.2748

Chhetri, D.R., Chhetri, A., Shahi, N., Tiwari, S., Karna, S.K.L., Lama, D. and Pokharel, Y.R., 2020. Isaria tenuipes Peck, an entomopathogenic fungus from Darjeeling Himalaya: Evaluation of in-vitro antiproliferative and antioxidant potential of its mycelium extract. BMC Complementary Medicine and Therapies, [online] 20(1), p.185. https://doi.org/10.1186/S12906-020-02973-W

Chiriví, J., Danies, G., Sierra, R., Schauer, N., Trenkamp, S., Restrepo, S. and Sanjuan, T., 2017. Metabolomic profile and nucleoside composition of Cordyceps nidus sp. nov. (Cordycipitaceae): A new source of active compounds. PloS One, [online] 12(6), p.e0179428. https://doi.org/10.1371/JOURNAL.PONE.0179428

Coolen, S., der-Molen Magda, R. Van and Welte, C.U., 2022. The secret life of insect-associated microbes and how they shape insect-plant interactions. FEMS Microbiology Ecology, [online] 98(9), pp.1-15. https://doi.org/10.1093/FEMSEC/FIAC083

Couttolenc, A., Medina, M.E., Trigos, Á. and Espinoza, C., 2022. Antioxidant capacity of fungi associated with corals and sponges of the reef system of Veracruz, Mexico. Electronic Journal of Biotechnology, 55, pp.40–46. https://doi.org/10.1016/J.EJBT.2021.11.002

D’Alessandro, C.P., Jones, L.R., Humber, R.A., López Lastra, C.C. and Sosa-Gomez, D.R., 2014. Characterization and phylogeny of Isaria spp. strains (Ascomycota: Hypocreales) using ITS1-5.8S-ITS2 and elongation factor 1-alpha sequences. Journal of Basic Microbiology, [online] 54 Suppl 1, pp.S21-S31. https://doi.org/10.1002/JOBM.201300499

Darriba, D., Taboada, G.L., Doallo, R. and Posada, D., 2012. jModelTest 2: more models, new heuristics and parallel computing. Nature Methods, [online] 9(8), p.772. https://doi.org/10.1038/NMETH.2109

Das, G., Shin, H.S., Leyva-Gómez, G., Prado-Audelo, M.L.D., Cortes, H., Singh, Y.D., Panda, M.K., Mishra, A.P., Nigam, M., Saklani, S., Chaturi, P.K., Martorell, M., Cruz-Martins, N., Sharma, V., Garg, N., Sharma, R. and Patra, J.K., 2021. Cordyceps spp.: A Review on Its Immune-Stimulatory and Other Biological Potentials. Frontiers in Pharmacology, [online] 11, p. 602364. https://doi.org/10.3389/FPHAR.2020.602364

Deaver, N.R., Hesse, C., Kuske, C.R. and Porras-Alfaro, A., 2019. Presence and distribution of insect-associated and entomopathogenic fungi in a temperate pine forest soil: An integrated approach. Fungal Biology, [online] 123(12), pp.864–874. https://doi.org/10.1016/J.FUNBIO.2019.09.006

Dong, C., Yang, T. and Lian, T., 2014. A comparative study of the antimicrobial, antioxidant, and cytotoxic activities of methanol extracts from fruit bodies and fermented mycelia of caterpillar medicinal mushroom Cordyceps militaris (Ascomycetes). International Journal of Medicinal Mushrooms, [online] 16(5), pp.485–495. https://doi.org/10.1615/INTJMEDMUSHROOMS.V16.I5.70

Gana, L.P., Etsassala, N.G.E.R. and Nchu, F., 2022. Interactive effects of water deficiency and endophytic Beauveria bassiana on plant growth, nutrient uptake, secondary metabolite contents, and antioxidant activity of Allium cepa L. Journal of Fungi, [online] 8(8), p.874. https://doi.org/10.3390/JOF8080874

Glare, T.R., Jackson, T.A. and Cisternas A., E., 1993. Beauveria vermiconia is an entomopathogenic fungus. Mycological Research, 97(3), pp.336–338. https://doi.org/10.1016/S0953-7562(09)81131-3

Glare, T.R., Reay, S.D., Nelson, T.L. and Moore, R., 2008. Beauveria caledonica is a naturally occurring pathogen of forest beetles. Mycological Research, [online] 112(3), pp.352–360. https://doi.org/10.1016/J.MYCRES.2007.10.015

Guzmán, G., Morón, M., Ramírez-Guillén, F. and Wolf, J., 2001. Entomogenous Cordyceps and related genera from Mexico with discussions on their hosts and new records. Mycotaxon, 78, pp.115–125.

Han, P., Zhang, X., Xu, D., Zhang, B., Lai, D. and Zhou, L., 2020. Metabolites from Clonostachys fungi and their biological activities. Journal of Fungi, [online] 6(4), pp.1–30. https://doi.org/10.3390/JOF6040229

Hodge, K., 2003. Clavicipitaceous Anamorphs. In: J.F.J. White, C.W. Bacon, N.L. Hywel-Jones and J.W. Spatafora, eds. Clavicipitalean fungi: Evolutionary biology, Chemistry, Biocontrol and Cultural Impacts. New York: Marcel Dekker Inc. pp.7–123.

Huang, Q.L., Siu, K.C., Wang, W.Q., Cheung, Y.C. and Wu, J.Y., 2013. Fractionation, characterization and antioxidant activity of exopolysaccharides from fermentation broth of a Cordyceps sinensis fungus. Process Biochemistry, 48(2), pp.380–386. https://doi.org/10.1016/J.PROCBIO.2013.01.001

Imoulan, A., Hussain, M., Kirk, P.M., El Meziane, A. and Yao, Y.J., 2017. Entomopathogenic fungus Beauveria: Host specificity, ecology and significance of morpho-molecular characterization in accurate taxonomic classification. Journal of Asia-Pacific Entomology, 20(4), pp.1204–1212. https://doi.org/10.1016/J.ASPEN.2017.08.015

Ingkaninan, K., Temkitthawon, P., Chuenchom, K., Yuyaem, T. and Thongnoi, W., 2003. Screening for acetylcholinesterase inhibitory activity in plants used in Thai traditional rejuvenating and neurotonic remedies. Journal of Ethnopharmacology, [online] 89(2–3), pp.261–264. https://doi.org/10.1016/j.jep.2003.08.008

Katoh, K., Rozewicki, J. and Yamada, K.D., 2019. MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Briefings in bioinformatics, [online] 20(4), pp.1160–1166. https://doi.org/10.1093/BIB/BBX108

Kenkhunthot, T. and Labua, S., 2020. Effect of crude extract from mycelium and fruiting body of Isaria tenuipes BCC 31640 on tyrosinase inhibition and antioxidant activities. Progress in Applied Science and Techology, 10(1), pp.320–10. https://ph02.tci-thaijo.org/index.php/past/article/view/242771

Kneževi?, A., Staji?, M., Sofreni?, I., Stanojkovi?, T., Milovanovi?, I., Teševi?, V. and Vukojevi?, J., 2018. Antioxidative, antifungal, cytotoxic and antineurodegenerative activity of selected Trametes species from Serbia. PloS One, [online] 13(8). https://doi.org/10.1371/JOURNAL.PONE.0203064

Kobayasi, Y., 1941. The genus Cordyceps and its allies. Science Reports of the Tokyo Bunrika Daigaku, Section B, 84, pp.53–260.

Krishna, K.V., Ulhas, R.S. and Malaviya, A., 2024. Bioactive compounds from Cordyceps and their therapeutic potential. Critical Reviews in Biotechnology, [online] 44(5), pp.753–773. https://doi.org/10.1080/07388551.2023.2231139

Lopez, A. and Garcia, J., 2002. Paecilomyces tenuipes Fungi: Hyphomycetes. Funga Veracruzana, 76, pp.1–4.

Lopez, A. and Garcia, J., 2009. Cordyceps dipterigena Ascomycetes: Clavicipetaceae. Funga Veracruzana, 87, pp.1–4.

Macuphe, N., Oguntibeju, O.O. and Nchu, F., 2021. Evaluating the endophytic activities of Beauveria bassiana on the physiology, growth, and antioxidant activities of extracts of lettuce (Lactuca sativa L.). Plants, [online] 10(6), p.1178 https://doi.org/10.3390/PLANTS10061178

Mata, G., Medel, R., Callac, P., Billette, C. and Garibay-Orijel, R., 2016. Primer registro de Agaricus bisporus (Basidiomycota, Agaricaceae) silvestre en Tlaxcala y Veracruz, México. Revista Mexicana de Biodiversidad, 87(1), pp.10–17. https://doi.org/10.1016/j.rmb.2016.01.019

Nikoh, N. and Fukatsu, T., 2000. Interkingdom host jumping underground: phylogenetic analysis of entomoparasitic fungi of the genus Cordyceps. Molecular Biology and Evolution, [online] 17(4), pp.629–638. https://doi.org/10.1093/OXFORDJOURNALS.MOLBEV.A026341

Olatunji, O.J., Tang, J., Tola, A., Auberon, F., Oluwaniyi, O. and Ouyang, Z., 2018. The genus Cordyceps: An extensive review of its traditional uses, phytochemistry and pharmacology. Fitoterapia, 129, pp.293–316.

https://doi.org/10.1016/J.FITOTE.2018.05.010

Pérez-Silva, E., 1978. Nuevos registros del género Cordyceps (Pyrenomycetes) en México. Boletín de la Sociedad Mexicana de Micología, 2(12), pp.19–25.

Pérez-Villamares, J.C., Burrola-Aguilar, C., Aguilar-Miguel, X., Sanjuan, T. and Jiménez-Sánchez, E., 2017. Nuevos registros de hongos entomopatógenos del género Cordyceps s. l. (Ascomycota: Hypocreales) del Estado de México. Revista Mexicana de Biodiversidad, 88(4), pp.773–783. https://doi.org/10.1016/j.rmb.2017.10.013

Prommaban, A., Sriyab, S., Marsup, P., Neimkhum, W., Sirithunyalug, J., Anuchapreeda, S., To-anun, C. and Chaiyana, W., 2022. Comparison of chemical profiles, antioxidation, inhibition of skin extracellular matrix degradation, and anti-tyrosinase activity between mycelium and fruiting body of Cordyceps militaris and Isaria tenuipes. Pharmaceutical Biology, [online] 60(1), pp.225–234. https://doi.org/10.1080/13880209.2021.2025255

Rabea, E.I., Nasr, H.M., Badawy, M.E.I. and El-Gendy, I.R., 2015. Toxicity of naturally occurring Bio-fly and chitosan compounds to control the Mediterranean fruit fly Ceratitis capitata (Wiedemann). Natural Product Research, [online] 29(5), pp.460–465. https://doi.org/10.1080/14786419.2014.948873

Rodrigues, J., Rocha, L.F.N., Martinez, J.M., Montalva, C., Humber, R.A. and Luz, C., 2022. Clonostachys spp., natural mosquito antagonists, and their prospects for biological control of Aedes aegypti. Parasitology research, [online] 121(10), pp.2979–2984. https://doi.org/10.1007/S00436-022-07630-4

Ronquist, F., Teslenko, M., Van Der Mark, P., Ayres, D.L., Darling, A., Höhna, S., Larget, B., Liu, L., Suchard, M.A. and Huelsenbeck, J.P., 2012. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology, [online] 61(3), pp.539–542. https://doi.org/10.1093/SYSBIO/SYS029

Samson, R.A., 1974. Paecilomyces and Some Allied Hyphomycete. Studies in Mycology, 6, pp.1-119.

Samson, R.A. and Evans, H.C., 1982. Two new Beauveria spp. from South America. Journal of Invertebrate Pathology, 39(1), pp.93–97. https://doi.org/10.1016/0022-2011(82)90162-8

Shrestha, B., Hyun, M.W., Oh, J., Han, J.-G., Lee, T.H., Cho, J.Y., Kang, H., Kim, S.H. and Sung, G.-H., 2014. Molecular evidence of a teleomorph-anamorph connection between Cordyceps scarabaeicola and Beauveria sungii and its implication for the systematics of Cordyceps sensu stricto. Mycoscience, 55(3), pp.231–239. https://doi.org/10.1016/j.myc.2013.09.004

Stamatakis, A. and Alachiotis, N., 2010. Time and memory efficient likelihood-based tree searches on phylogenomic alignments with missing data. Bioinformatics, [online] 26(12). https://doi.org/10.1093/BIOINFORMATICS/BTQ205

Stuart, A.K. da C., Furuie, J.L., Cataldi, T.R., Stuart, R.M., Zawadneak, M.A.C., Labate, C.A. and Pimentel, I.C., 2023. Metabolomics of the interaction between a consortium of entomopathogenic fungi and their target insect: Mechanisms of attack and survival. Pesticide Biochemistry and Physiology, [online] 191. https://doi.org/10.1016/J.PESTBP.2023.105369

Sun, Z.B., Li, S.D., Ren, Q., Xu, J.L., Lu, X. and Sun, M.H., 2020. Biology and applications of Clonostachys rosea. Journal of Applied Microbiology, [online] 129(3), pp.486–495. https://doi.org/10.1111/JAM.14625

Sung, G.-H., Hywel-Jones, N.L., Sung, J.-M., Jennifer Luangsa-ard, J.J., Shrestha, B., Spatafora, J.W., 2007. Phylogenetic classification of Cordyceps and the clavicipitaceous fungi. Studies in Mycology, 57, pp.5–59. https://doi.org/10.3114/sim.2007.57.01

Toledo, A. V., Virla, E., Humber, R.A., Paradell, S.L. and Lastra, C.C.L., 2006. First record of Clonostachys rosea (Ascomycota: Hypocreales) as an entomopathogenic fungus of Oncometopia tucumana and Sonesimia grossa (Hemiptera: Cicadellidae) in Argentina. Journal of Invertebrate Pathology, [online] 92(1), pp.7–10. https://doi.org/10.1016/J.JIP.2005.10.005

Del Valle Catania, M. and Robledo, G.L., 2019. Hongos patógenos de insectos. Cordyceps pseudomilitaris y C. takaomontana. In: G.J. Scrocchi and C. Szumik, eds. Universo Tucumano. [online] Tucumán: Fundación Miguel Lilo. pp.8–11. Available at: [Accessed 9 August 2024].

Vega, F.E., 2008. Insect pathology and fungal endophytes. Journal of Invertebrate Pathology, 98(3), pp.277–279. https://doi.org/10.1016/J.JIP.2008.01.008

Wang, J., Kan, L., Nie, S., Chen, H., Cui, S.W., Phillips, A.O., Phillips, G.O., Li, Y. and Xie, M., 2015. A comparison of chemical composition, bioactive components and antioxidant activity of natural and cultured Cordyceps sinensis. LWT - Food Science and Technology, 63(1), pp.2–7. https://doi.org/10.1016/J.LWT.2015.03.109

Watanabe, T., 2002. Pictorial atlas of soil and seed fungi: Morphologies of cultured fungi and key to species, second edition. [online], Second Edition. CRC Press, pp.504. https://doi.org/10.1201/9781420040821

Wu, J., Yu, X., Wang, X., Tang, L. and Ali, S., 2019. Matrine Enhances the Pathogenicity of Beauveria brongniartii Against Spodoptera litura (Lepidoptera: Noctuidae). Frontiers in Microbiology, [online] 10. https://doi.org/10.3389/FMICB.2019.01812

Yamaguchi, Y., Kagota, S., Nakamura, K., Shinozuka, K. and Kunitomo, M., 2001. Antioxidant activity of the extracts from fruiting bodies of cultured Cordyceps sinensis. Phytotherapy Research, 14(8), pp.647–649. https://doi.org/10.1002/1099-1573(200012)14:8<647::AID-PTR670>3.0.CO;2-W

Yang, Z., Wu, Q., Fan, J., Huang, J., Wu, Z., Lin, J., Bin, S. and Shu, B., 2021. Effects of the entomopathogenic fungus Clonostachys rosea on mortality rates and gene expression profiles in Diaphorina citri adults. Journal of Invertebrate Pathology, [online] 179, p.107539. https://doi.org/10.1016/J.JIP.2021.107539

Yokoyama, E., Yamagishi, K. and Hara, A., 2005. Heterothallism in Cordyceps takaomontana. FEMS Microbiology Letters, 250(1), pp.145–150. https://doi.org/10.1016/J.FEMSLE.2005.07.004

Zhang, Y., Zhang, X., Tian, Q., Ali, S., Tang, L. and Wu, J., 2022. Toxicological and biochemical description of synergism of Beauveria bassiana and Emamectin Benzoate against Megalurothrips usitatus (Bagrall). Journal of Fungi, [online] 8(9), p.916. https://doi.org/10.3390/JOF8090916

Zibaee, A., Bandani, A.R. and Tork, M., 2009. Effect of the entomopathogenic fungus, Beauveria bassiana, and its secondary metabolite on detoxifying enzyme activities and acetylcholinesterase (AChE) of the Sunn pest, Eurygaster integriceps (Heteroptera: Scutellaridae). Biocontrol Science and Technology, [online] 19(5), pp.485–498. https://doi.org/10.1080/09583150902847127




URN: http://www.revista.ccba.uady.mx/urn:ISSN:1870-0462-tsaes.v28i1.58008

DOI: http://dx.doi.org/10.56369/tsaes.5800



Copyright (c) 2025 Celeste Ricaño Rodríguez, Irene Lagunes Apodaca, Manuel Eusebio Medina López, Alan Couttolenc Aguirre, Rosario Medel Ortiz, César Espinoza Ramírez

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.