CHLOROPHYLL FLUORESCENCE, AND ROOT TRAITS IN MYCORRHIZAL PLANTS OF Persea americana MILL. UNDER DIFFERENT SOIL AGRICULTURAL MANAGEMENT

Abigail Balderas-Alba, Rocio Vega-Frutis, Gregorio Luna-Esquivel

Abstract


Background. The avocado, Persea americana, is a fruit crop of immense importance to Mexican agriculture with increasing demand worldwide. Hence there is an increment in the cultivated area and the use of agrochemical products. Current research explores how arbuscular mycorrhizal (AM) fungi may reduce agrochemicals in avocado crops. Therefore, it is necessary to investigate the specific conditions under which the application of AM fungi is beneficial and the compatible host plants or genotypes. Objective. To investigate whether the origin of soil and AM inoculum from two orchards with different soil agricultural management affect the infectivity (percentage of AM colonization) and effectivity (chlorophyll fluorescence and root traits) of the avocado plants, and whether chlorophyll fluorescence and root traits correlate with the percentage of AM colonization. Methodology. A factorial experiment with three factors: i) the origin of seed (two seeds origin), ii) the origin of soil, and iii) the origin of AM inoculum from two orchards with different soil agricultural management was performed. Results. Although root-soil-AM interactions are highly complex, we found evidence that the origins of seed, soil, and AM inoculum can affect the performance of plants in terms of chlorophyll fluorescence, and root traits. Additionally, infectivity was greater when the soil and AM inoculum were agrochemical-free. We discuss our findings in the context of soil mineral nutrients and seed origin. Implications. This study contributes to understanding the mechanisms that underlie plant-AM interactions in plants from two seed origins and soil agricultural management in avocado plants, an important cultivated tree for humans worldwide. Conclusion. The combination of root traits and leaf may improve our understanding of the mechanisms that underlie plant-microbe interactions in plants from two seed origins and soil agricultural management to enhance not only avocado production but also the long-term sustainability and yield stability of avocado agroecosystems.

Keywords


avocado; chlorophyll fluorescence; Nayarit; organic manures; root branching ratio; specific root length.

Full Text:

PDF

References


Altendorf, S., 2019. Major tropical fruits market review 2018. Rome: FAO.

Amaya-Acosta, M., Castro-Rojas, J., Gómez-Aldapac, C., Villagómez-Ibarra, J., Román-Gutiérrez, A. and Rangel-Vargas, E., 2016. Evaluación de la eficiencia de desinfección del hipoclorito de sodio y ácido acético sobre microorganismos patógenos en la superficie del aguacate Hass. Boletín de Ciencias Agropecuarias del ICAP, 4. https://doi.org/10.29057/icap.v2i4.306

Amani, F.M., Javanmard, A., Habibi, M.R. and Sadeghpour, A., 2022. Arbuscular mycorrhizal fungi and changes in primary and secondary metabolites. Plants, 11, pp. 2183. https://doi.org/10.3390/plants11172183

Balderas-Alba, A., Luna-Esquivel, G. and Vega-Frutis, R., 2019. Arbuscular mycorrhizal colonization in avocado orchards with two different farm management practices. Interciencia, 44, pp. 649-652.

Bañuelos, J., Sangabriel, C.W., Gavito, M.E., Trejo, A.D., Camara, S., Medel, O.R. and Carreon, A.Y., 2017. Effect of different phosphorus levels on avocado inoculated with arbuscular mycorrhizal fungi. Revista Mexicana de Ciencias Agrícolas, 8, pp. 1509-1520.

Bedoya-Ramírez, S.I., Saavedra-Porras, S., Loaiza-Ruíz, R.A., Barrera-Sánchez, C.F. and Córdoba-Gaona, O.J., 2023. Physiological and morphological characterization of avocado creole (Persea americana Mill.) accessions for elite rootstocks. Revista Colombiana de Ciencias Hortícolas, 17, pp. e15830. https://doi.org/10.17584/rcch.2023v17i2.15830

Bergmann, J., Weigelt, A., van der Plas, F., Laughlin, D.C., Kuyper, T.W., Guerrero-Ramirez, N., Valverde-Barrantes, O.J., Bruelheide, H., Freschet, G.T., Iversen, C.M., Kattge, J., McCormack, M.L., Meier, I.C., Rillig, M.C., Roumet, C., Semchenko, M., Sweeney, C.J., van Ruijven, J., York, L.M. and Mommer, L., 2020. The fungal collaboration gradient dominates the root economics space in plants. Science Advances, 6, pp. eaba3756. https://doi.org/10.1126/sciadv.aba3756

Berruti, A., Lumini, E., Balestrini, R. and Bianciotto, V., 2016. Arbuscular mycorrhizal fungi as natural biofertilizers: Let’s benefit from past successes. Frontiers in Microbiology, 6, pp. 1559. https://doi.org/10.3389/fmicb.2015.01559

Carreón-Abud, Y., Gómez-Dorantes, N., Beltrán-Nambo, M.A., Alvarado-Herrejón, M. and Varela-Fregoso, L., 2016. Diversidad de hongos micorrícicos arbusculares provenientes de la rizósfera de aguacate (Persea americana Mill) y selección de plantas trampa para su propagación. Biológicas, 18, pp. 1-9.

Carreón, A.Y., Aguirre, P.S., Gavito, M.E., Mendoza, S.D.J., Juárez, C.R., Martínez, T.M. and Trejo, A.D., 2014. Arbuscular mycorrhizal inoculation in avocado rootstocks cv “Hass” in nurseries of Michoacán, Mexico. Revista Mexicana de Ciencias Agrícolas, 5, pp. 847-857.

Castellanos, J.Z., Uvalle, B.J.X. and Aguilar, S.A., 2000. Manual de interpretación de análisis de suelos y aguas. Instituto de Nutrición de Centro América y Panamá: Mexico

Castro-Alvarado, E., Chávez, B.A.T., García, S.P.A, Reyes, R.L. and Bárcenas, O.A.E., 2013. Effect of mycorrhizal inoculants in the development of Mexican landrace avocado rootstocks. Tropical and Subtropical Agroecosystems, 16, pp. 407-413. http://doi.org/10.56369/tsaes.1636

Chen, W., Koide, R.T., Adams, T.S., DeForest, J.L., Cheng, L. and Eissenstat, D,M., 2016. Root morphology and mycorrhizal symbioses together shape nutrient foraging strategies of temperate trees. Proceedings of the National Academy of Sciences, 113, pp. 8741-8746. https://doi.org/10.1073/pnas.1601006113

Cho, K., Goldstein, B., Gounaridis, D. and Newell, J.P., 2021. Where does your guacamole come from? Detecting deforestation associated with the export of avocados from Mexico to the United States. Journal of Environmental Management, 278, pp. 111482. https://doi.org/10.1016/j.jenvman.2020.111482

Comas, L.H., Callahan, H.S. and Midford, P.E., 2014. Patterns in root traits of woody species hosting arbuscular and ectomycorrhizas: implications for the evolution of belowground strategies. Ecology and Evolution, 4, pp. 2979-2990. https://doi.org/10.1002/ece3.1147

Croce, R., Carmo-Silva, E., Cho, Y.B., Ermakova, M., Harbinson, J., Lawson, T., McCormick, A.J., Niyogi, K.K., Ort, D.R., Patel-Tupper, D., Pesaresi, P., Raines, C., Weber, A.P.M. and Zhu, X-G. 2024. Perspectives on improving photosynthesis to increase crop yield. The Plant Cell. https://doi.org/10.1093/plcell/koae132

Delpiano, C.A., Prieto, I., Loayza, A.P., Carvajal, D.E. and Squeo, F.A., 2020. Different responses of leaf and root traits to changes in soil nutrient availability do not converge into a community-level plant economics spectrum. Plant and Soil, 450, pp. 463-478. https://doi.org/10.1007/s11104-020-04515-2

Denvir, A., 2023. Avocado expansion and the threat of forest loss in Michoacán, Mexico under climate change scenarios. Applied Geography, 151, pp. 102856. https://doi.org/10.1016/j.apgeog.2022.102856

Edwards, J., Johnson, C., Santos-Medellín, C., Lurie, E., Podishetty, N.K., Bhatnagar, S., Eisen, J.A. and Sundaresan, V., 2015. Structure, variation, and assembly of the root-associated microbiomes of rice. Proceedings of the National Academy of Sciences, 20, pp. E911-E920. https://doi.org/10.1073/pnas.1414592112

FAO (Food and Agriculture Organization of the United Nations). 2024. Resilience gaps and opportunities for the avocado industry. Revised. Sustainable Tropical Fruits, No. 2. Rome. https://doi.org/10.4060/cc6837en

Fassio, C., Cautin, R., Perez-Donoso, A.G., Castro, M. and Bonomelli, C., 2020. Comparative branching order and root anatomy of clonal and seedgrown avocado trees (Persea americana Mill.). International Journal of Agriculture and Natural Resources, 47, pp. 134-144. http://dx.doi.org/10.7764/ijanr.v47i2.2240

Galindo-Tovar, M.E., Ogata-Aguilar, N. and Arzate-Fernández, A.M., 2008. Some aspects of avocado (Persea americana Mill.) diversity and domestication in Mesoamerica. Genetic Resources and Crop Evolution, 55, pp. 441-450. https://doi.org/10.1007/s10722-007-9250-5

Goltsev, V.N., Kalaji, H.M., Paunov, M., Baba, W., Horaczek, T., Mojski, J., Kociel, H. and Allakhverdiev, S.I., 2016. Variable chlorophyll fluorescence and its use for assessing physiological condition of plant photosynthetic apparatus. Russian Journal of Plant Physiology, 63, pp. 869-893. https://doi.org/10.1134/S1021443716050058

Gupta, M.M. and Abbott, L.K., 2021 Exploring economic assessment of the arbuscular mycorrhizal symbiosis. Symbiosis, 83, pp. 143-152. https://doi.org/10.1007/s13199-020-00738-0

INIFAP (Instituto Nacional de Investigaciones Forestales Agrícolas y Pecuarias). 2012. Muestreo de suelos y preparación de muestras. INIFAP/CIRNE/A-487. http://www.inifapcirne.gob.mx/Biblioteca/Publicaciones/935.pdf (accessed March 13, 2021)

Johnson, N., 1993. Can fertilization of soil select less mutualistic mycorrhizae? Ecological Applications, 3, 749-757. https://doi.org/10.2307/1942106

Johnson, N., 2010. Resource stoichiometry elucidates the structure and function of arbuscular mycorrhizas across scales. New Phytologist, 185, 631-647. https://doi.org/10.1111/j.1469-8137.2009.03110.x

Johnson, N., Wilson, G.W.T., Bowker, M.A., Wilson, J.A. and Miller, R.M., 2010. Resource limitation is a driver of local adaptation in mycorrhizal symbioses. Proceedings of the National Academy of Sciences, 107, pp. 2093-2098. https://doi.org/10.1073/pnas.0906710107

Kalaji, H.M., Jajoo, A., Oukarroum, A., Brestic, M., Zivcak, M., Samborska, I.A., Cetner, M.D., Lukasik, I., Goltsev, V. and Ladle, R.J., 2016. Chlorophyll a fluorescence as a tool to monitor physiological status of plants under abiotic stress conditions. Acta Physiologiae Plantarum, 38, pp. 102. https://doi.org/10.1007/s11738-016-2113-y

Kong, D., Ma, C., Zhang, Q., Li, L., Chen, X., Zeng, H. and Guo, D., 2014. Leading dimensions in absorptive root trait variation across 96 subtropical forest species. New Phytologist, 203, pp. 863-872. https://doi.org/10.1111/nph.12842

Kong, D., Wang, J., Zeng, H., Liu, M., Miao, Y., Wu, H. and Kardol, P., 2017. The nutrient absorption-transportation hypothesis: optimizing structural traits in absorptive roots. New Phytologist, 213, 1569-1572. https://www.jstor.org/stable/90000505

Koske, R. and Gemma, J.N., 1989. Modified procedure for staining roots to detect VA mycorrhizas. Mycological Research, 92, pp. 486-488. https://doi.org/10.1016/S0953-7562(89)80195-9

Kramer-Walter, K.R., Bellingham, P.J., Millar, T.R., Smissen, R.D., Richardson, S.J. and Laughlin, D.C., 2016. Root traits are multidimensional: specific root length is independent of root tissue density and the plant economic spectrum. Journal of Ecology, 104, pp. 1299-1310. https://doi.org/10.1111/1365-2745.12562

Lal, R., 2020. Soil organic matter content and crop yield. Journal of Soil and Water Conservation, 75, pp. 27A-32A. https://doi.org/10.2489/jswc.75.2.27A

Laliberté, E., 2017. Below-ground frontiers in trait-based plant ecology. New Phytologist, 213, pp. 1597-1603. https://doi.org/10.1111/nph.14247

Lauriano-Barajas, J. and Vega-Frutis, R., 2018. Infectivity and effectivity of commercial and native arbuscular mycorrhizal biofertilizers in seedlings of maize (Zea mays). Botanical Sciences, 96, pp. 395-404. https://doi.org/10.17129/botsci.1855

Lemus-Soriano, B.A., Venegas-González, E. and Pérez-López, M.A., 2021. Efecto de bioestimulantes radiculares sobre el crecimiento de plantas de aguacate. Revista Mexicana de Ciencias Agrícolas, 12, pp. 1139-1144. https://doi.org/10.29312/remexca.v12i6.2725

Lenth, R.V., 2016. Least-squares means: the R package lsmeans. Journal of Statistical Software, 69, pp. 1-33. https://doi.org/10.18637/jss.v069.i01

Liu, B., Li, H., Zhu, B., Koide, R.T., Eissenstat, D.M. and Guo, D., 2015. Complementarity in nutrient foraging strategies of absorptive fine roots and arbuscular mycorrhizal fungi across 14 coexisting subtropical tree species. New Phytologist, 208, pp. 125-136. https://doi.org/10.1111/nph.13434

Liu, W.J., Chen, Y.E., Tian, W.J., Du, J.B., Zhang, Z.W., Xu, F., Zhang, F., Yuan, S. and Lin, H.H., 2009. Dephosphorylation of photosystem II proteins and phosphorylation of CP29 in barley photosynthetic membranes as a response to water stress. Biochimica et Biophysica Acta, 1787, pp. 1238-1245. https://doi.org/10.1016/j.bbabio.2009.04.012

Lobet, G., Pagès, L. and Draye, X., 2011. A novel image-analysis toolbox enabling quantitative analysis of root system architecture. Plant Physiology, 157, pp. 29-39. https://doi.org/10.1104/pp.111.179895

Lugli, L.F., Andersen, K.M., Aragão, L.E.O.C., Cordeiro, A.L., Cunha, H.F.V., Fuchslueger, L., Meir, P., Mercado, L.M., Oblitas, E., Quesada, C.A., Rosa, J.S., Schaap, K.J., Valverde-Barrantes, O. and Hartley, I.P., 2020. Multiple phosphorus acquisition strategies adopted by fine roots in low-fertility soils in Central Amazonia. Plant and Soil, 450, pp. 49-63. https://doi.org/10.1007/s11104-019-03963-9

Maherali, H., 2014. Is there an association between root architecture and mycorrhizal growth response? New Phytologist, 204, pp. 192-200. https://doi.org/10.1111/noh.12927

Martin, A.R. and Isaac, M.E., 2021. The leaf economics spectrum’s morning coffee: plant size-dependent changes in leaf traits and reproductive onset in a perennial tree crop. Annals of Botany, 127, pp. 483-493. https://doi.org/10.1093/aob/mcaa199

Martin, F.M. and van der Heijden, M.G.A., 2024. The mycorrhizal symbiosis: research frontiers in genomics, ecology, and agricultural application. New Phytologist, 242, pp. 1486-1506. https://doi.org/10.1111/nph.19541

Martín-Robles, N., García-Palacios, P., Rodríguez, M., Rico, D., Vigo, R., Sánchez-Moreno, S., De Deyn, G.B. and Milla, R., 2020. Crops and their wild progenitors recruit beneficial and detrimental soil biota in opposing ways. Plant and Soil, 456, pp. 159-173. https://doi.org/10.1007/s11104-020-04703-0

Martínez-Ferri, E., Zumaquero, A., Ariza, M.T., Barceló, A., and Pliego, C., 2016. Nondestructive detection of white root rot disease in avocado rootstocks by leaf chlorophyll fluorescence. Plant Disease, 100, pp. 49-58. https://doi.org/10.1094/PDIS-01-15-0062-RE

Maxwell, K. and Johnson, G.N., 2000. Chlorophyll fluorescence – a practical guide. Journal of Experimental Botany, 51, pp. 659-668. https://doi.org/10.1093/jexbot/51.345.659

McGonigle, T.P., Miller, M.H., Evans, D.G., Fairchild, G.L. and Swan, J.A., 1990. A new method, which gives an objective measure of colonization of roots by vesicular-arbuscular mycorrhizal fungi. New Phytologist, 115, pp. 495-501. https://doi.org/10.1111/j.1469-8137.1990.tb00476.x

Morales-Londoño, D.M., Meyer, E., González, D., González-Hernández, A., Soares, C.R.F.S. and Lovato, P.E., 2019. Landrace maize varieties differ from conventional and genetically modified hybrid maize in response to inoculation with arbuscular mycorrhizal fungi. Mycorrhiza, 29, pp. 237-249. https://doi.org/10.1007/s00572-019-00883-5

Osorio, V.N.W., Serna, G.S.L. and Montoya, R.B.E., 2012. Use of soil microorganisms as a biotechnological strategy to enhance avocado (Persea americana) - plant phosphate uptake and growth. Revista Facultad Nacional de Agronomía Medellín, 65, pp. 6645-6657.

R Development Core Team., 2019. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/

Raya-Hernández, A.I., Jaramillo-López, P.F., López-Carmona, D.A., Díaz, T., Carrera-Valtierra, J.A. and Larsen, J. 2020. Field evidence for maize-mycorrhiza interactions in agroecosystems with low and high P soils under mineral and organic fertilization. Applied Soil Ecology, 149, pp. 103511. https://doi.org/10.1016/j.apsoil.2020.103511

Rillig, M.C., Aguilar-Trigueros, C.A., Camenzind, T., Cavagnaro, T.R., Degrune, F., Hohmann, P., Lammel, D.R., Mansour, I., Roy, J., van der Heijden, M.G.A. and Yang, G., 2019. Why farmers should manage the arbuscular mycorrhizal symbiosis. New Phytologist, 222, pp. 1171-1175. https://www.jstor.org/stable/26675876

Rillig, M.C., Sosa-Hernández, M.A., Roy, J., Aguilar-Trigueros, C.A., Vályi, K. and Lehmann, A., 2016. Towards an integrated mycorrhizal technology: harnessing mycorrhiza for sustainable intensification in agriculture. Frontiers in Plant Science, 7, pp. 1625. https://doi.org/10.3389/fpls.2016.01625

Rincón-Hernández, C.A., Sánchez, P.J.D.L. and Espinosa-García, F.J., 2011. Caracterización química foliar de los árboles de aguacate criollo (Persea americana var. drymifolia) en los bancos de germoplasma de Michoacán, México. Revista Mexicana de Biodiversidad, 82, pp. 395-412.

Rivera, P.F.A., González, V., González, J.G. and Ossa, P.A., 2016. Caracterización molecular, análisis morfológico y colonización micorrízica en la rizósfera del aguacate (Persea americana Mill) en Caldas, Colombia. Acta Agronómica, 65, pp. 398-405. https://doi.org/10.15446/acag.v65n4.51714

Sánchez-Pérez, J.L., 1999. Recursos genéticos de aguacate (Persea americana Mill) y especies afines en México. Revista Chapingo Serie Hortícola, 5, pp. 7-18.

SEMARNAT (Secretaría del Medio Ambiente y Recursos Naturales)., 2002. (before: NOM-021-RECNAT-2000). Norma oficial mexicana, que establece las especificaciones de fertilidad, salinidad y clasificación de suelos. Estudios, muestreo y análisis. Diario Oficial de la Federación. 31 de diciembre de 2002, Mexico. https://es.slideshare.net/mbelprieto/nom-021semarnat2000 (accessed February 29, 2019).

Shezi, S., Magwaza, L.S., Mashilo, J., Tesfay, S.Z. and Mditshwa, A., 2020. Photochemistry and photoprotection of “Gem” avocado (Persea americana Mill.) leaves within and outside the canopy and the relationship with fruit maturity. Journal of Plant Physiology, 246-247, pp. 153130. https://doi.org/10.1016/j.jplph.2020.153130

Shi, J., Wang, X. and Wang, E., 2023. Mycorrhizal symbiosis in plant growth and stress adaptation: from genes to ecosystems. Annual Review of Plant Biology, 74, pp. 569-607. https://doi.org/10.1146/annurev-arplant-061722-090342

SIAP (Servicio de Información Agroalimentaria y Pesquera)., 2023. https://nube.siap.gob.mx/avance_agricola/ (accessed March 1, 2024)

Smith, S.E. and Read, D., 2008. Mycorrhizal symbiosis. USA: Elsevier.

Smith, S.E. and Smith, F.A., 2011. Roles of arbuscular mycorrhizas in plant nutrition and growth: New paradigms from cellular to ecosystem scales. Annual Review of Plant Biology, 62, pp. 227-250. https://doi.org/10.1146/annurev-arplant-042110-103846

Tauro, R., Manrique, S., Franch-Pardo, I., Charre-Medellin, J.F., Ortega-Riascos, C.E., Soria-González, J.A., Armendáriz-Arnez, C., 2023. Spatial expansion of avocado in Mexico: could the energy use of pruning residues offset orchard GHG emissions? Environment Development and Sustainability, 25, pp. 7873-7902. https://doi.org/10.1007/s10668-023-03762-4

Trejo, D., Barois, I. and Sangabriel-Conde, W., 2016. Disturbance and land use effect on functional diversity of the arbuscular mycorrhizal fungi. Agroforestry Systems, 90, pp. 265-279. https://doi.org/10.1007/s10457-015-9852-4

USDA FAS (U.S. Department of Agriculture, Foreign Agricultural Service)., 2021. Mexico: Avocado Annual (September 15, 2020). https://www.fas.usda.gov/data/mexico-avocado-annual-5 (accessed March 1, 2021)

Vega-Frutis, R., Luna-Esquivel, G., Figueroa-Esquivel, E.M., 2018. Land-use change impact on mycorrhizal symbiosis in female and male plants of wild Carica papaya (Caricaceae). Symbiosis, 76, pp. 209-219. https://doi.org/10.1007/s13199-018-0549-0

Wang, B. and Qui, Y.L., 2006. Phylogenetic distribution and evolution of mycorrhizas in land plants. Mycorrhiza, 16, pp. 299-363. https://doi.org/10.1007/s00572-005-0033-6

Wen, Z., Li, H., Shen, Q., Tang, X., Xiong, C., Li, H., Pang, J., Ryan, M.H., Lambers, H. and Shen, J., 2019 Tradeoffs among root morphology, exudation and mycorrhizal symbioses for phosphorus-acquisition strategies of 16 crops species. New Phytologist, 223, pp. 882-895. https://doi.org/10.1111/nph.15833

Wijayawardene, N.N., Hyde, K.D., Dai, D.Q., Sánchez-García, M., Goto, B.T., Saxena, R.K., et al., 2022. Outline of fungi and fungus-like taxa - 2021. Mycosphere, 13, pp. 53-453. https://doi.org/10.5943/mycosphere/13/1/2

Wu, C., Wang, Z., Sun, H. and Guo, S., 2006. Effects of different concentrations of nitrogen and phosphorus on chlorophyll biosynthesis, chlorophyll a fluorescence, and photosynthesis in Larix olgensis seedlings. Frontiers of Forest in China, 1, pp. 170-175. https://doi.org/10.1007/s11461-006-0019-3

Zhao, J, Guo, B., Hou, Y., Yang, Q., Feng, Z., Zhao, Y., Yang, X., Fan, G., and Kong, D., 2024. Multi-dimensionality in plant root traits: progress and challenges. Journal of Plant Ecology, 17, pp. rtae043. https://doi.org/10.1093/jpe/rtae043

Zhang, Y., Cao, J., Lu, M., Kardol, P., Wang, J., Fan, G. and Kong, D., 2024. The origin of bi-dimensionality in plant root traits. Trends in Ecology & Evolution, 31, 78-88. https://doi.org/10.1016/j.tree.2023.09.002

Zhu, X.C., Son, F-B. and Liu, S.Q., 2011. Effects of arbuscular mycorrhizal fungus on photosynthesis and water status of maize under high-temperature stress. Plant and Soil, 346, pp. 189-199. https://doi.org/10.1007/s11104-011-0809-8

Zhu, X.C., Song, F.B. and Xu, H.W., 2010. Arbuscular mycorrhizae improve low-temperature stress in maize via alterations in host water status and photosynthesis. Plant and Soil, 331, pp. 129-137. https://doi.org/10.1007/s11104-009-0239-z

Zuur, A.F., Leno, E.N. and Elphick, C.S., 2010. A protocol for data exploration to avoid common statistical problems. Methods in Ecology and Evolution, 1, pp. 3-14. https://doi.org/10.1111/j.2041-210X.2009.00001.x




URN: http://www.revista.ccba.uady.mx/urn:ISSN:1870-0462-tsaes.v28i1.57740

DOI: http://dx.doi.org/10.56369/tsaes.5774



Copyright (c) 2025 Rocio Vega Frutis

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.