IMPROVED MAIZE YIELD AND PROFITABILITY IN THE HUMID TROPICS THROUGH PERMANENT BEDS, CROP RESIDUES, AND BEAN ROTATION

Ouorou Ganni Mariel Guera, Jonatan Villa-Alcántara, Omar Núñez-Peñaloza, Nele Verhulst, Simon Fonteyne

Abstract


Background. Oaxaca is a Mexican state with diverse agroecological regions, necessitating local studies to evaluate sustainable agricultural practices. The region of Papaloapan, Oaxaca, is characterized by soil degradation, aggravated by steep slopes, high rainfall and the predominance of luvisolic soils, which are prone to erosion on the surface and compaction in the subsoil (plow sole). An alternative to reduce soil degradation could be conservation agriculture, but its successful implementation and mass adoption will require studies to adapt its components (minimum soil movement, permanent soil cover, and crop diversification) to local conditions. Objective. To evaluate the combined effects of conservation agriculture components on maize (Zea mays L.) yield and profitability. Methodology. From 2014 to 2019, a randomized complete block design (RCBD) was used to evaluate eight treatments resulting from the combination of tillage practices (conventional tillage, no-tillage, and permanent beds), crop residue management (keep or remove), crop rotation (Mucuna pruriens and Phaseolus vulgaris L.), different fertilization formulas, and soil amendments. Results. Maize rotated with beans in permanent beds with crop residue showed an average yield of 5.2 Mg ha-1, a net profit of $16,517.00 MXN ha-1, and a benefit-cost ratio of 1.69, demonstrating better performance than the control treatment (conventional tillage without crop rotation, 5.1 Mg ha-1, $7,721.00 MXN ha-1, and 1.53). Even without crop rotation, systems with permanent beds and crop residue showed maize yields superior to zero tillage and like conventional tillage. Implications. Maize in spring-summer rotated with beans in autumn-winter in permanent beds with residue retention yields similar to the conventional system and produces higher net profit. Conclusion. Conservation agriculture in its variant of permanent beds with crop residue and maize-bean rotation is a viable option for sustainable agricultural production in the humid tropics such as the Papaloapan.

Keywords


Conservation agriculture; zero tillage; crop rotation; cover crops; integrated fertility; sustainability.

Full Text:

PDF

References


Araya, T., Cornelis, W.M., Nyssen, J., Govaerts, B., Bauer, H., Gebregziabher, T., Oicha, T., Raes, D., Sayre, K.D., Haile, M. and Deckers, J., 2011. Effects of conservation agriculture on runoff, soil loss and crop yield under rain fed conditions in Tigray, Northern Ethiopia. Soil Use and Management, 27, pp. 404-414. https://doi.org/10.1111/j.1475-2743.2011.00347.x

Bates, D., Mächler, M., Bolker, B. and Walker, S., 2015. Fitting Linear Mixed-Effects Models Using lme4. Journal of Statistical Software, 67, pp. 1–48. https://doi.org/10.18637/jss.v067.i01

Canalli, L.B.S., Costa,G. V., Volsi, B., Leocádio, A.L.M., Neves, C.S.V.J. and Telles, T.S., 2020. Production and profitability of crop rotation systems in southern Brazil. Ciências Agrárias, 41, pp. 2541-2554. https://doi.org/10.5433/1679-0359.2020v41n6p2541

Chen, Y., Liu, S., Li, H., Li, X.F., Song, C.Y., Cruse, R.M. and Zhang, X.Y., 2011. Effects of conservation tillage on corn and soybean yield in the humid continental climate region of Northeast China. Soil and Tillage Research, 115–116, pp. 56–61. http://dx.doi.org/10.1016/j.still.2011.06.007

Choudhary, M., Ghasal, P.C., Kumar, S., Yadav, R.P., Singh, S., Meena, V.S. and Kumar, B.J., 2016. Conservation Agriculture and Climate Change: An Overview. In: Bisht, J., Meena, V., Mishra, P., Pattanayak, A. (eds) Conservation Agriculture. Springer, Singapore. https://doi.org/10.1007/978-981-10-2558-7_1

Drury, C., Liebig, M., Angers, D., Cavigelli, M., Dechow, R. et al., 2017. How conservation agriculture can mitigate greenhouse gas emissions and enhance soil carbon storage in croplands. Global Research Alliance. https://globalresearchalliance.org/wp-content/uploads/2018/02/Conservation-Agriculture-Network-Brochure-Aug-2017.pdf. Acceso 20 jul. 2023.

Emrah, E.H., Havlicek, E., Dazzi, C., Montanarella, L., Van, L.M., Vrš?aj, B., Krasilnikov, P., Khasankhanova, G. and Vargas, R., 2021. Soil conservation and sustainable development goals (SDGs) achievement in Europe and central Asia: Which role for the European soil partnership? International Soil and Water Conservation Research, 9, pp. 360-369. https://doi.org/10.1016/j.iswcr.2021.02.003

Enesi, R.O., Dyck, M., Chang, S., Thilakarathna, M.S., Fan, X., Strelkov, S. and Gorim, L.Y., 2023. Liming remediates soil acidity and improves crop yield and profitability - a meta-analysis. Frontiers in Agronomy, 5, pp. 1-13. https://doi.org/10.3389/fagro.2023.1194896

FAO, Food and Agriculture Organization of the United Nations., 2015. Los suelos sanos son la base para la producción de alimentos saludables. http://www.fao.org/soils-2015/news/news?detail/es/c/277721/. Acceso 20 sep. 2023.

Fitzmaurice, G.M., Laird, N.M. and Ware, J.H. Applied longitudinal analysis. JohnWiley & Sons: New York, 2004.

Fonteyne, S., Burgueño, J., Albarrán, C.B.A., Andrio, E.E., Castillo, V.L., Enyanche, V.F. et al., 2021. Effects of conservation agriculture on physicochemical soil health in 20 maize-based trials in different agro-ecological regions across Mexico. Land Degradation & Development, 32, pp. 2242-2256. https://doi.org/10.1002/ldr.3894

Fonteyne, S., Leal González A.J., Osorio Alcalá L., Villa Alcántara J., Santos Rodriguez C., Núñez Penaloza O. et al., 2022. Weed management and tillage effect on rainfed maize production in three agro-ecologies in Mexico. Weed Research, 62, pp. 224–239. https://doi.org/10.1111/wre.12530

Fonteyne, S., Martinez, G.M.A., Saldivia, T.A. and Verhulst, N., 2019. Conservation Agriculture Improves Long-term Yield and Soil Quality in Irrigated Maize-oats Rotation. Agronomy, 9, pp. 1-13. https://doi.org/10.3390/agronomy9120845

Fonteyne, S., Singh, R.G., Govaerts, B. and Verhulst, N., 2020. Rotation, Mulch and Zero Tillage Reduce Weeds in a Long-Term Conservation Agriculture Trial. Agronomy, 10, pp. 1-16. https://doi.org/10.3390/agronomy10070962

Ghabbour, E.A., Davies, G., Misiewicz, T., Alami, R.A., Askounis, E.M., Cuozzo, N.P. et al., 2017. Chapter One - National Comparison of the Total and Sequestered Organic Matter Contents of Conventional and Organic Farm Soils. Advances in Agronomy, 146, pp. 1–35. https://doi.org/10.1016/bs.agron.2017.07.003

Gliessman, S.R. (2014). Field and Laboratory Investigations in Agroecology. 3rd ed., Florida: CRC Press.

Govaerts, B., Sayre, K.D. and Deckers, J., 2005. Stable high yields with zero tillage and permanent bed planting? Field Crops Research, 94, pp. 33-42. http://dx.doi.org/10.1016/j.fcr.2004.11.003

Govaerts, B., Sayre, K.D., Lichter, K., Dendooven, L. and Deckers, J., 2007. Influence of permanent raised bed planting and residue management on physical and chemical soil quality in rain fed maize/wheat systems. Plant and Soil, 291, pp. 39-54. http://dx.doi.org/10.1007/s11104-006-9172-6

Heger, M., Zens, G. and Bangalore, M., 2018. Does the Environment Matter for Poverty Reduction? The Role of Soil Fertility and Vegetation Vigor in Poverty Reduction. Policy Research Working Papers, 8537, pp. 39. https://doi.org/10.1596/1813-9450-8537

Hobbs, P.R., Sayre, K. and Gupta, R., 2008. The role of conservation agriculture in sustainable agriculture. Philosophical Transactions of the Royal Society B, 363, pp. 543–555. https://doi.org/10.1098/rstb.2007.2169

Hunt, J.R., Celestina, C. and Kirkegaard, J.A., 2020. The realities of climate change, conservation agriculture and soil carbon sequestration. Global Change Biology, 26, pp. 3188-3189. https://doi.org/10.1111/gcb.15082

Jayaraman, S., Dang, Y.P., Naorem, A., Page, K.L. and Dalal, R.C., 2021. Conservation Agriculture as a System to Enhance Ecosystem Services. Agriculture, 11, pp. 1-14. https://doi.org/10.3390/agriculture11080718

Johnston, A.M. and Bruulsema, T.W., 2014. 4R Nutrient Stewardship for Improved Nutrient Use Efficiency. Procedia Engineering, 83, pp. 365-370. https://doi.org/10.1016/j.proeng.2014.09.029

Kuznetsova A., Brockhoff, P.B. and Christensen, R.H.B., 2017. lmerTest Package: Tests in Linear Mixed Effects Models. Journal of Statistical Software, 82, pp. 1-26. https://doi.org/10.18637/jss.v082.i13

LaFevor, M.C. 2022. Crop Species Production Diversity Enhances Revenue Stability in Low-Income Farm Regions of Mexico. Agriculture, 12, 1835. https://doi.org/10.3390/agriculture12111835

Levene, H., 1960. Robust tests for equality of variances. In Contributions to Probability and Statistics; Stanford University Press: California, pp. 278–292.

López, H.W.A., 2017. La competitividad del limón persa (Citrus latifolia Tanaka) en la región de la cuenca del Papaloapan, del estado de Oaxaca. Tesis presentada para obtener el grado de maestro en ciencias. Instituto de enseñanza e investigación en ciencias agrícolas, Colegio de Postgraduados, México.

Loy, A., Steele, S. and Korobova, J., 2023. _lmeresampler: Bootstrap Methods for Nested Linear Mixed-Effects Models. R package version 0.2.4. https://CRAN.R-project.org/package=lmeresampler

Lüdecke, D., Ben-Shachar, M.S., Patil, I., Waggoner, P. and Makowski, D., 2021. performance: An R Package for Assessment, Comparison and Testing of Statistical Models. Journal of Open Source Software, 6, pp. 1-7. https://doi.org/10.21105/joss.03139

Miranda-Vidal, J.F., Barba-Macías, E., Trinidad-Ocaña, C. and Juárez-Flores, J., 2016. Diversidad de crustáceos en la cuenca baja del río Papaloapan, Veracruz, México. Hidrobiológica, 26, pp. 475-482. https://doi.org/10.24275/uam/izt/dcbs/hidro/2016v26n3/Barba

Nakazawa, M., 2023. fmsb: Functions for Medical Statistics Book with some Demographic Data. R package version 0.7.5. https://CRAN.R-project.org/package=fmsb

Naresh, R.K., Singh, S.P. and Chauhan, P., 2012. Influence of conservation agriculture, permanent raised bed planting and residue management on soil quality and productivity in maize-wheat system in western Uttar Pradesh. International Journal of Life Science Biotechnology and Pharma Research, 1, pp. 27–34.

Ngoma, H., Angelsen, A., Jayne, T.S. and Chapoto, A., 2021. Understanding Adoption and Impacts of Conservation Agriculture in Eastern and Southern Africa: A Review. Frontiers in Agronomy, 3, pp. 1-13. https://doi.org/10.3389/fagro.2021.671690

Nichols, V., Verhulst, N., Cox, R. and Govaerts, B., 2015. Weed dynamics and conservation agriculture principles: A review. Field Crops Research, 183, pp. 56-68. https://doi.org/10.1016/j.fcr.2015.07.012

Ogle, S.M., Swan, A. and Paustian, K., 2012. No-till management impacts on crop productivity, carbon input and soil carbon sequestration. Agriculture, Ecosystems & Environment, 149, pp. 37–49. https://doi.org/10.1016/j.agee.2011.12.010

Panettieri, M., Carmona B.I., Melero, S., Madejón, E. and Gómez-Macpherson, H., 2013. Effect of permanent bed planting combined with controlled traffic on soil chemical and biochemical properties in irrigated semi-arid Mediterranean conditions. Catena, 107, pp. 103–109. https://doi.org/10.1016/j.catena.2013.02.008

Parada-Sánchez, L.M., Villegas-Aparicio, Y., Vásquez-Dávila, M.A. and Manzanero-Medina, G.I., 2019. Mercados tradicionales de ganado en los valles centrales de Oaxaca, México. AICA, 14, pp. 47-52.

Pérez, V.A. and Ortiz, P.M.A., 2002. Cambio de la cubierta vegetal y vulnerabilidad a la inundación en el curso bajo del río Papaloapan, Veracruz. Investigaciones Geográficas, 48, pp. 90-105.

Pittelkow, C., Linquist, B., Lundy, M., Liang, X., Groenigen, K., Lee, J., Gestel, N., Six, J., Venterea, R. and Kessel, C., 2015. When does no-till yield more? A global meta-analysis, Field Crops Research, 183, pp. 156–168. https://doi.org/10.1016/j.fcr.2015.07.020

R Core Team. R: A Language and Environment for Statistical Computing; R Core Team: Vienna, Austria, 2020.

Rojas, J.C.G. and Mota, M.E., 2002. Agroclimatología del maíz de México. Revista Geográfica, 132, pp. 123–140.

Romero, P.R., Verhulst, N., de La Rosa, D., Hernández, V., Maertens, M., Deckers, J. and Govaerts, B., 2014. Ef fects of tillage and crop residue management on maize yields and net returns in the Central Mexican highlands under drought conditions. Pedosphere, 24, pp. 476-486. https://doi.org/10.1016/S1002-0160(14)60034-5

Sahrawat, K.L., Rego, T.J., Wani, S.P. and Pardhasaradhi, G., 2008. Sulfur, boron, and zinc fertilization effects on grain and straw quality of maize and sorghum grown in semi-arid tropical region of India. Journal of Plant Nutrition, 31, pp. 1578–1584. https://doi.org/10.1080/01904160802244712

Saldivia-Tejeda, A., Fonteyne, S., Guan, T. and Verhulst, N., 2021. Permanent Bed Width Has Little Effect on Crop Yield under Rainfed and Irrigated Conditions across Central Mexico. Agriculture, 11, pp. 1-12. https://doi.org/10.3390/agriculture11100930

Sánchez-Hernández, M.A., Jiménez-Maya, J.B., Morales-Terán, G., Acevedo-Gómez, R., Antonio-Estrada, C. and Villanueva-Verduzco, C., 2019. Rendimiento de grano en maíces adaptados a condiciones de la baja cuenca del Papaloapan. Tropical and Subtropical Agroecosystems, 22, pp. 519-529. http://dx.doi.org/10.56369/tsaes.2608

Sayre, K and Govaerts, B., 2012. The principles of conservation agriculture. In: Reynolds, M.P., Pask, A.J.D., Mullan, D.M. (eds) Physiological breeding I: interdisciplinary approaches to improve crop adaption. CIMMYT, Texcoco, pp. 164-174.

Schielzeth, H., Dingemanse, N.J., Nakagawa, S., Westneat, D.F., Allegue, H. et al., 2020. Robustness of linear mixed-effects models to violations of distributional assumptions. Methods in Ecology and Evolution, 11, pp. 1141-1152. https://doi.org/10.1111/2041-210X.13434

Schut, A.G.T. and Giller, K.E., 2020. Soil-based, field-specific fertilizer recommendations are a pipe-dream. Geoderma, 380, pp. 1-6. https://doi.org/10.1016/j.geoderma.2020.114680

SEMARNAT. Secretaría de Medio Ambiente y Recursos Naturales., 2023. Climas. http://gisviewer.semarnat.gob.mx/aplicaciones/Atlas2015/atm_climas.html

Shapiro, S.S. and Wilk, M.B., 1965. An analysis of variance test for normality (complete samples). Biometrika, 52, pp. 591-611. https://doi.org/10.1093/biomet/52.3-4.591

SIAP, 2020. Estadística de Producción Agrícola. Acceso 22 Sep. 2020 Disponible en: http://infosiap.siap.gob.mx/gobmx/datosAbiertos.php

Soane, B.D., Ball, B.C., Arvidsson, J., Basch, G., Moreno, F. and Roger-Estrade, J., 2012. No-till in northern, western and south-western Europe: A review of problems and opportunities for crop production and the environment. Soil and Tillage Research, 118, pp. 66-87. https://doi.org/10.1016/j.still.2011.10.015

Speratti, A., Turmel, M. S., Calegari, A., Araujo-junior, C. F., Violic, A., Wall, P. and Govaerts, B., 2015. Conservation Agriculture in Latin America. In Conservation Agriculture. Springer International Publishing, pp. 391-415. http://dx.doi.org/10.1007/978-3-319-11620-4_16

Stewart, Z.P., Pierzynski, G.M., Middendorf, B.J. and Vara Prasad, P.V., 2020. Approaches to improve soil fertility in sub-Saharan Africa. Journal of Experimental Botany, 71, pp. 632–641. http://dx.doi.org/10.1093/jxb/erz446

Sun, W., Canadell, J.G., Yu, L., Yu, L., Zhang, W., Smith, P., Fischer, T. and Huang, Y., 2020. Climate drives global soil carbon sequestration and crop yield changes under conservation agriculture. Global Change Biology, 26, pp. 3325–3335. http://dx.doi.org/10.1111/gcb.15001

Tanumihardjo, S.A., McCulley, L., Roh, R., Lopez-Ridaura, S., Palacios-Rojas, N. and Gunaratna, N.S., 2020. Maize agro-food systems to ensure food and nutrition security in reference to the Sustainable Development Goals. Global Food Security, 25, pp. 1-9. https://doi.org/10.1016/j.gfs.2019.100327

Thierfelder, C., Baudron, F., Setimela, P., Nyagumbo, I., Mupangwa, W. et al., 2018. Complementary practices supporting conservation agriculture in southern Africa. A review. Agronomy for Sustainable Development, 38, pp. 1-22. https://doi.org/10.1007/s13593-018-0492-8

Toliver, D.K., Larson, J.A., Roberts, R.K., English, B.C., De La Torre Ugarte, D.G. and West, T.O., 2012. Effects of not-till on yields as influenced by crop and environmental factors. Agronomy Journal, 104, pp. 530–541. https://www.doi.org/10.2134/agronj2011.0291

Van den Putte, A., Govers, G., Diels, J., Gillijns, K. and Demuzere, M., 2010. Assessing the effect of soil tillage on crop growth. A meta-regression analysis on European crop yields under conservation agriculture. European Journal of Agronomy, 33, pp. 231–241. https://doi.org/10.1016/j.eja.2010.05.008

Van Dusen, M.E. and Taylor, J.E., 2005. Missing markets and crop diversity: evidence from Mexico. Environment and Development Economics, Cambridge University Press, 10, pp. 513-531.

Vásquez, C.M.A., Castañeda, H.E., Lozano, T.S., Pérez, L.M.I., Santiago, M.G.M. and Robles, P.C., 2017. Caracterización de sistemas de cultivo de maíz en regiones del estado de Oaxaca. Revista Mexicana de Agroecosistemas, 4, pp. 24-37.

Verhulst, N., Francois, I. and Govaerts, B., 2012. Conservation agriculture, improving soil quality for sustainable production systems? El Batán, México; CIMMYT.




URN: http://www.revista.ccba.uady.mx/urn:ISSN:1870-0462-tsaes.v28i2.57569

DOI: http://dx.doi.org/10.56369/tsaes.5756



Copyright (c) 2025 Simon Fonteyne

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.