LIGNOCELLULOLYTIC ACTIVITY OF Ganoderma spp. STRAINS ISOLATED FROM THE CENTRAL REGION OF VERACRUZ, MEXICO

Stephanie Hernández-González, Oswaldo Guzmán-López, Guillermo Mendoza-Cervantes

Abstract


Background. Fungi of the genus Ganoderma cause white rot of wood in forest trees and trees of economic importance due to the variety of lignocellulolytic enzymes they produce, which may be widely applied for environmental, food production, and biotechnological purposes, among others. Methodology. Fourteen strains of the genus Ganoderma isolated from the central region of Veracruz were studied. Qualitative assays were conducted in Petri dishes to determine the production of cellulase, laccase, and peroxidase enzymes in media with CMC, ABTS, and Azure B, respectively. Activity indexes were calculated according to the formation of discoloration and oxidation halos. Five strains with significant activity were selected, which were used for the quantitative determination of cellulase, laccase, lignin peroxidase, and manganese peroxidase activities using crude extracts obtained from liquid cultures in flasks with minimal medium by spectrophotometric assays with CMC, ABTS, Azure B, and manganese sulfate as reaction substrates. Results. The qualitative assays showed cellulase and laccase activity but not peroxidase activity in the studied strains. The quantitative assays showed cellulase, laccase, and lignin peroxidase activity but not manganese peroxidase activity, where laccase activity was the most relevant. The strains G. weberianum GV26 and Ganoderma sp. GV11 showed the highest laccase production on the 16th day of culture at 27±1 °C, with 102.8 and 106.2 U/L, respectively. Implications. The strains with significant enzymatic activities are candidates for further studies of optimization, purification, and bioremediation of recalcitrant xenobiotic compounds. Conclusion. The strains Ganoderma GV11 and GV26 are a potential source of lignocellulolytic enzymes that could be applied in biotechnological processes.

Keywords


White rot; Cellulases; Laccases; ABTS; Azure B.

Full Text:

PDF

References


Agrawal, N., Verma, P. and Shahi, S.K., 2018. Degradation of polycyclic aromatic hydrocarbons (phenanthrene and pyrene) by the ligninolytic fungi Ganoderma lucidum isolated from the hardwood stump. Bioresources and Bioprocessing, 5(1), pp.1-9. https://doi.org/10.1186/s40643-018-0197-5

Archibald, F.S., 1992. A new assay for lignin-type peroxidases employing the dye azure B. Applied and Environmental Microbiology, 58(9), pp. 3110-3116. https://doi.org/10.1128/aem.58.9.3110-3116.1992

Arora, D.S. and Gill, P.K., 2001. Comparison of two assay procedures for lignin peroxidase. Enzyme and Microbial Technology, 28(7-8), pp. 602-605. https://doi.org/10.1016/S0141-0229(01)00302-7

Cabarroi-Hernández, M., Villalobos-Arámbula, A.R., Torres-Torres, M.G., Decock, C. and Guzmán-Dávalos, L., 2019. The Ganoderma weberianum-resinaceum lineage: multilocus phylogenetic analysis and morphology confirm G. mexicanum and G. parvulum in the Neotropics. MycoKeys, 59, pp. 95-131. https://doi.org/10.3897/mycokeys.59.33182

Cao, Y., Wu, S.H. and Dai, Y.C., 2012. Species clarification of the prize medicinal Ganoderma mushroom “Lingzhi”. Fungal Diversity, 56, pp. 49-62. https://doi.org/10.1007/s13225-012-0178-5

Cao, Y., Xu, X., Liu, S., Huang, L. and Gu, J., 2018. Ganoderma: A cancer immunotherapy review. Frontiers in Pharmacology, 9, 1-14. https://doi.org/10.3389/fphar.2018.01217

Cappello-García, S., García-García, M.A., Rivas-Acuña, M.G., Carreño-Ruiz, S.D. and Cifuentes-Blanco, J., 2023. Registros nuevos del género Ganoderma (Agaricomycetes: Polyporales) para México y Tabasco. Revista Mexicana de Biodiversidad, 94, pp. 1-26. https://doi.org/10.22201/ib.20078706e.2023.94.5013

Chan-Cupul, W., Heredia-Abarca, G.P. and Rodríguez-Vázquez, R., 2016. Aislamiento y evaluación de la actividad enzimática ligninolítica de macromicetos del estado de Veracruz, México. Revista Internacional de Contaminación Ambiental, 32(3), pp. 339-351. https://doi.org/10.20937/RICA.2016.32.03.08

Chauhan, R., 2019. Nitrogen sources and trace elements influence laccase and peroxidase enzymes activity of Grammothele fuligo. Vegetos, 32, pp. 316-323. https://doi.org/10.1007/s42535-019-00049-w

Chmelová D. and Ondrejovic M., 2014. Effect of potential inductors on laccase production by white-rot fungus Ceriporiopsis subvermispora. Journal of Microbiology, Biotechnology and Food Sciences, 3, pp. 84-87. https://office2.jmbfs.org/index.php/JMBFS/article/view/7629

Coniglio, R.O., Fonseca, M.I., Villalba, L.L. and Zapata, P.D., 2016. Screening of new secretory cellulases from different supernatants of white rot fungi from Misiones, Argentina. Mycology, 8(1), pp. 1-10. https://doi.org/10.1080/21501203.2016.1267047

Coronado-Ruiz, C., Avendaño, R., Escudero-Leyva, E., Conejo-Barboza, G., Chaverri, P. and Chavarría, M., 2018. Two new cellulolytic fungal species isolated from a 19th-century art collection. Scientific Reports, 8, pp. 1-9. https://doi.org/10.1038/s41598-018-24934-7

Dávila, G. and Vázquez-Duhalt, R., 2006. Enzimas ligninolíticas fúngicas para fines ambientales. Mensaje Bioquímico, 30, pp. 29-54.

de Menezes, T.A., Bispo, A.S.d.R., Koblitz, M.G.B., Vandenberghe, L.P.d.S., Kamida, H.M. and Goes-Neto, A., 2016. Production of basidiomata and ligninolytic enzymes by the Lingzhi or Reishi medicinal mushroom, Ganoderma lucidum (Agaricomycetes), in Licuri (Syagrus coronata) wastes in Brazil. International Journal of Medicinal Mushrooms, 18(12), pp. 1141-1149. https://doi.org/10.1615/intjmedmushrooms.v18.i12.90

Dinis, M.J., Bezerra, R.M.F., Nunes, F., Dias, A.A., Guedes, C.V., Ferreira, L.M.M., Cone, J.W., Marques, G.S.M., Barros, A.R.N. and Rodrigues, M.A.M., 2009. Modification of wheat straw lignin by solid state fermentation with white-rot fungi. Bioresource Technology, 100(20), pp. 4829-4835. https://doi.org/10.1016/j.biortech.2009.04.036

Du, Z., Dong, C.-H., Wang, K. and Yao, Y.-J., 2019. Classification, biological characteristics and cultivations of Ganoderma. In: Z. Lin and B. Yang, eds. Advances in Experimental Medicine and Biology, Singapore: Springer, pp. 15-58. https://doi.org/10.1007/978-981-13-9867-4_2

Elissetche, J.-P., Ferraz, A., Freer, J. and Rodríguez, J., 2006. Enzymes produced by Ganoderma australe growing on wood and in submerged cultures. World Journal of Microbiology and Biotechnology, 23(3), pp. 429-434. https://doi.org/10.1007/s11274-006-9243-0

Erden, E., Ucar, M.C., Gezer, T. and Pazarlioglu, N.K., 2009. Screening for ligninolytic enzymes from autochthonous fungi and applications for decolorization of remazole marine blue. Brazilian Journal of Microbiology, 40(2), pp. 346-353. https://doi.org/10.1590/S1517-83822009000200026

Espinosa-García, V., Mendoza, G., Shnyreva, A.V., Padro?n, J.M. and Trigos, Á., 2021. Biological activities of different strains of the genus Ganoderma spp. (Agaricomycetes), from Mexico. International Journal of Medicinal Mushrooms, 23(2), pp. 67-77. https://doi.org/10.1615/intjmedmushrooms.2021037451

Falade, A.O., Nwodo, U.U., Iweriebor, B.C., Green, E., Mabinya, L.V. and Okoh, A.I., 2017. Lignin peroxidase functionalities and prospective applications. MicrobiologyOpen, 6(1), pp. 1-14. https://doi.org/10.1002/mbo3.394

He, J., Han, X., Luo, Z.-L., Li, E.-X., Tang, S.-M., Luo, H.-M., Niu, K.-Y., Su, X.-j. and Li, S.-H., 2022. Species diversity of Ganoderma (Ganodermataceae, Polyporales) with three new species and a key to Ganoderma in Yunnan Province, China. Frontiers in Microbiology, 13, pp. 1-18. https://doi.org/10.3389/fmicb.2022.1035434

Heinzkill, M., Bech, L., Halkier, T., Schneider, P., and Anke, T. 1998. Characterization of laccases and peroxidases from wood-rotting fungi (family Coprinaceae). Applied and environmental microbiology, 64(5), pp. 1601-1606. https://doi.org/10.1128/AEM.64.5.1601-1606.1998

Hernández-Luna, C.E., Gutiérrez-Soto, G. and Salcedo-Martínez, S.M., 2017. Screening for decolorizing basidiomycetes in Mexico. World Journal of Microbiology and Biotechnology, 24(4), pp. 465-473. https://doi.org/10.1007/s11274-007-9495-3

Hu, Y., Xu, W., Hu, S., Lian, L., Zhu, J., Shi, L., Ren, A. and Zhao, M., 2019. In Ganoderma lucidum, Glsnf1 regulates cellulose degradation by inhibiting GlCreA during the utilization of cellulose. Environmental Microbiology, 22(1), pp. 107-121. https://doi.org/10.1111/1462-2920.14826

Huy, N.D., Tien, N.T.T., Huyen, L.T., Quang, H.T., Tung, T.Q., Luong, N.N. and Park, S.M., 2017. Screening and production of manganese peroxidase from Fusarium sp. on residue materials. Mycobiology, 45(1), pp. 52-56. https://doi.org/10.5941/MYCO.2017.45.1.52

Index Fungorum., 2024. Index Fungorum https://www.indexfungorum.org/ [Consultado el 31 de mayo de 2024]

Ipeaiyeda, A.R., Adenipekun, C.O. and Oluwole, O., 2020. Bioremediation potential of Ganoderma lucidum (Curt: Fr) P. Karsten to remove toxic metals from abandoned battery slag dumpsite soil and immobilisation of metal absorbed fungi in bricks. Cogent Environmental Science, 6(1), pp. 1-14. https://doi.org/10.1080/23311843.2020.1847400

Jazuli, N.A., Kamu, A., Chong, K.P., Gabda, D., Hassan, A., Abu-Seman, I. and Ho, C.M., 2022. A review of factors affecting Ganoderma basal stem rot disease progress in oil palm. Plants, 11(19), pp. 1-14. https://doi.org/10.3390/plants11192462

Jo, W.S., Cho, Y.J., Cho, D.H., Park, S.D., Yoo, Y.B. and Seok, S.J., 2009. Culture conditions for the mycelial growth of Ganoderma applanatum. Mycobiology, 37(2), pp. 94-102. https://www.tandfonline.com/doi/abs/10.4489/MYCO.2009.37.2.094

Júnior, S.D.d.O., Gouvêa, P.R.d.S., Vasconcelos, A.d.S., Nascimento, L.B.d.B.d., Pessoa, V.A., Silva, G.L.d., Sales-Campos, C. and Chevreuil, L.R., 2022. Cellulase and xylanase production by Ganoderma lucidum in solid-state fermentation using amazonian lignocellulosic wastes. Studies in Engineering and Exact Sciences, 3(3), pp. 455-471. https://doi.org/10.54021/sesv3n3-003

Kaur, H., Kapoor, S. and Sharma, S., 2018. An efficient method for qualitative screening of ligninolytic enzyme potential of Ganoderma lucidum. International Journal of Current Microbiology and Applied Sciences, 7(08), pp. 2442-2459. https://doi.org/10.20546/ijcmas.2018.708.247

Khoo, Y.W. and Chong, K.P., 2023. Ganoderma boninense: general characteristics of pathogenicity and methods of control. Frontiers in Plant Science, 14, pp. 1-17. https://doi.org/10.3389/fpls.2023.1156869

Kirk, T.K. and Farrell, R.L., 1987. Enzymatic "combustion": the microbial degradation of lignin. Annual Review of Microbiology, 41(1), pp. 465-501. https://doi.org/10.1146/annurev.mi.41.100187.002341

Levin, L., Melignani, E. and Ramos, A.M., 2010. Effect of nitrogen sources and vitamins on ligninolytic enzyme production by some white-rot fungi. Dye decolorization by selected culture filtrates. Bioresource Technology, 101(12), pp. 4554-4563. https://doi.org/10.1016/j.biortech.2010.01.102

Liew, C.Y., Husaini, A., Hussain, H., Muid, S., Liew, K.C. and Roslan, H.A., 2010. Lignin biodegradation and ligninolytic enzyme studies during biopulping of Acacia mangium wood chips by tropical white rot fungi. World Journal of Microbiology and Biotechnology, 27(6), pp. 1457-1468. https://doi.org/10.1007/s11274-010-0598-x

Loyd, A.L., Richter, B.S., Jusino, M.A., Truong, C., Smith, M.E., Blanchette, R.A. and Smith, J.A., 2018. Identifying the “mushroom of immortality”: assessing the Ganoderma species composition in commercial Reishi products. Frontiers in Microbiology, 9, pp. 1-14. https://doi.org/10.3389/fmicb.2018.01557

Meddeb-Mouelhi, F., Moisan, J.K. and Beauregard, M., 2014. A comparison of plate assay methods for detecting extracellular cellulase and xylanase activity. Enzyme and Microbial Technology, 66, pp. 16-19. https://doi.org/10.1016/j.enzmictec.2014.07.004

Mendoza-Arceo, A., Chan-Cupul, W., Osuna-Castro, J.A. and Carrillo-Díaz, M.I., 2024. Actividad enzimática ligninolítica de dos poblaciones de Ganoderma spp. en interacción con Trichoderma spp. Revista Internacional de Contaminación Ambiental, 40, pp. 81-94. https://doi.org/10.20937/rica.54451

Mendoza, G., Guzmán, G., Ramírez-Guillén, F., Luna, M. and Trigos, Á., 2011. Ganoderma oerstedii (Fr.) Murrill (higher Basidiomycetes), a tree parasite species in Mexico: taxonomic description, rDNA study, and review of its medical applications. International Journal of Medicinal Mushrooms, 13(6), pp. 545-552. https://doi.org/10.1615/intjmedmushr.v13.i6.60

Moncalvo, J.M. and Rivarden, L., 1997. A nomenclatural study of the Ganodermataceae. Oslo, Norway: Fungiflora A/S. https://www.mykoweb.com/systematics/literature/A%20Nomenclatural%20Study%20of%20the%20Ganodermataceae.pdf

Montoya, S., Sánchez, O.J. and Levin, L., 2014. Evaluation of endoglucanase, exoglucanase, laccase, and lignin peroxidase activities on ten white-rot fungi. Biotecnología en el Sector Agropecuario y Agroindustrial, 12(2), pp. 115-124. http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S1692-35612014000200013

MycoBank., 2024. MycoBank https://www.mycobank.org/ [Consultado el 31 de mayo de 2024]

Pedersen, M., Hollensted, M., Lange, L. and Andersen, B., 2009. Screening for cellulose and hemicellulose degrading enzymes from the fungal genus Ulocladium. International Biodeterioration & Biodegradation, 63(4), pp. 484–489. https://doi.org/10.1016/j.ibiod.2009.01.006

Peralta, R.M., da Silva, B.P., Gomes Côrrea, R.C., Kato, C.G., Vicente Seixas, F.A. and Bracht, A., 2017. Enzymes from Basidiomycetes—Peculiar and efficient tools for biotechnology. In: G. Brahmachari, ed. Biotechnology of Microbial Enzymes. New York: Academic Press. pp. 119-149. https://doi.org/10.1016/B978-0-12-803725-6.00005-4

Pingili, M., Marla, S.R., Raparla, R. and Vanga, S., 2017. Isolation and screening of lignocellulose degrading fungi from degraded fruit litter. International Journal of Current Microbiology Applied Sciences, 6(12), pp. 2200-2206. https://doi.org/10.20546/ijcmas.2017.612.252

Qin, P., Wu, Y., Adil, B., Wang, J., Gu, Y., Yu, X., Zhao, K., Zhang, X., Ma, M., Chen, Q., Chen, X., Zhang, Z. and Xiang, Q., 2019. Optimization of laccase from Ganoderma lucidum decolorizing remazol brilliant blue R and GLAC1 as main laccase-contributing gene. Molecules, 24(21), pp. 1-14. https://doi.org/10.3390/molecules24213914

Rodrigues, E.M., Karp, S.G., Malucelli, L.C., Helm, C.V. and Alvarez, T.M., 2019. Evaluation of laccase production by Ganoderma lucidum in submerged and solid-state fermentation using different inducers. Journal of Basic Microbiology, 59(8), pp. 784-791. https://doi.org/10.1002/jobm.201900084

Salmon, D.N.X., Spier, M.R., Soccol, C.R., Vandenberghe, L.P.d.S., Weingartner Montibeller, V., Bier, M.C. J. and Faraco, V., 2014. Analysis of inducers of xylanase and cellulase activities production by Ganoderma applanatum LPB MR-56. Fungal Biology, 118(8), pp. 655-662. https://doi.org/10.1016/j.funbio.2014.04.003

Sánchez-Corzo, L.D., Álvarez-Gutiérrez, P.E., Meza-Gordillo, R., Villalobos-Maldonado, J.J., Enciso-Pinto, S. and Enciso-Sáenz, S., 2021. Lignocellulolytic enzyme production from wood rot fungi collected in Chiapas, Mexico, and their growth on lignocellulosic material. Journal of Fungi, 7(6), pp. 1-14. https://doi.org/10.3390/jof7060450

Saptarini, N.M. and Hadisoebroto, G., 2017. The Activity of Cellulase Enzymes of Ganoderma applanatum and Ganoderma tropicum. Journal of Applied Pharmaceutical Science, 7, pp. 134-137. https://doi.org/10.7324/japs.2017.70419

Serrano-Márquez, L., Trigos, Á., Couttolenc, A., Padrón, J.M., Shnyreva, A.V. and Mendoza, G., 2021. Antiproliferative and antibacterial activity of extracts of Ganoderma strains grown in vitro. Food Science and Biotechnology, 30, pp. 711-721. https://doi.org/10.1007/s10068-021-00903-1

Shehnaz and Prasher, I.B, 2022. An insight into the growth and nutritional requirements for ligninolytic enzymes production by Rigidoporus vinctus, Journal of Postharvest Technology, 10(4), pp. 1-19. http://jpht.in/MenuscriptFile/50178f09-6b2d-47b4-8742-764f3f6fce29.pdf

Shrestha, P., Joshi, B., Joshi, J., Malla, R. and Sreerama, L., 2016. Isolation and physicochemical characterization of laccase from Ganoderma lucidum-CDBT1 isolated from its native habitat in Nepal. BioMed Research International, 2016, pp. 1-10. https://doi.org/10.1155/2016/3238909

Silva, C., Melo, I. and Oliveira, P., 2005. Ligninolytic enzyme production by Ganoderma spp. Enzyme Microbial Technology. 37, pp. 324-329. https://doi.org/10.1016/j.enzmictec.2004.12.007

Singh, N., Kumar, A. and Sharma, B., 2019. Role of fungal enzymes for bioremediation of hazardous chemicals. In: A.N. Yadav, S. Singh, S. Mishra and A. Gupta, eds. Recent Advancement in White Biotechnology Through Fungi. Cham: Springer. pp. 237-256. https://doi.org/10.1007/978-3-030-25506-0_9

Staji?, M., Vukojevi?, J., Kneževi?, A. and Milovanovi?, I., 2013. Influence of trace elements on ligninolytic enzyme activity of Pleurotus ostreatus and P. pulmonarius. BioResources, 8(2), pp. 3027-3037. https://doi.org/10.15376/biores.8.2.3027-3037

Stoilova, I., Krastanov, A. and Stanchev, V., 2010. Properties of crude laccase from Trametes versicolor produced by solid-substrate fermentation. Advances in Bioscience and Biotechnology, 1(3), pp. 208-215. https://doi.org/10.4236/abb.2010.13029

Suárez-Medellín, J., Luna-Rodríguez, M., Mendoza, G., Salinas, A., Suárez-Quiroz, M.L. and Trigos, Á., 2012. Caracterización morfológica y molecular de una cepa silvestre mexicana perteneciente al género Ganoderma. Revista Mexicana de Micología, 36, pp. 33-40. https://www.scielo.org.mx/pdf/rmm/v36/v36a6.pdf

Thiribhuvanamala, G., Kalaiselvi, G., Parthasarathy, S., Madhavan, S. and Prakasam, V., 2017. Extracellular secretion of lignocellulolytic enzymes by diverse white rot basidiomycetes fungi. Annals of Phytomedicine, 6(1), pp. 20-29. http://www.ukaazpublications.com/publications/vol6no1/

Torres-Torres, M.G., Ryvarden, L. and Guzmán-Dávalos, L., 2015. Ganoderma subgenus Ganoderma in Mexico. Revista Mexicana de Micología, 41, pp. 27-45. https://www.scielo.org.mx/pdf/rmm/v41/v41a5.pdf

Trigos, Á. and Medellín, J.S., 2011. Biologically active metabolites of the genus Ganoderma: Three decades of myco-chemistry research. Revista Mexicana de Micología, 34, pp. 63-83. https://www.scielo.org.mx/scielo.php?pid=S0187-31802011000200009&script=sci_arttext

Tuomela, M. and Hatakka, A., 2019. Oxidative fungal enzymes for bioremediation. In: M. Moo-Young, ed. Comprehensive Biotechnology. Oxford: Pergamon. pp. 224-239. https://doi.org/10.1016/B978-0-444-64046-8.00349-9

Vishnoi, N. and Dixit, S., 2019. Bioremediation: New prospects for environmental cleaning by fungal Enzymes. In: A.N. Yadav, S. Singh, S. Mishra, A. Gupta, eds. Recent Advancement in White Biotechnology Through Fungi. Cham: Springer. pp. 17-52. https://doi.org/10.1007/978-3-030-25506-0_2

Viswanath, B., Rajesh, B., Janardhan, A., Kumar, A.P. and Narasimha, G., 2014. Fungal laccases and their applications in bioremediation. Enzyme research, 2014, pp. 1-21 https://doi.org/10.1155/2014/163242

Wan, C. and Li, Y., 2012. Fungal pretreatment of lignocellulosic biomass. Biotechnology Advances, 30(6), pp. 1447-1457. https://doi.org/10.1016/j.biotechadv.2012.03.003

Wang, D.M. and Yao, Y.J., 2005. Intrastrain internal transcribed spacer heterogeneity in Ganoderma species. Canadian Journal of Microbiology, 51(2), pp. 113-121. https://doi.org/10.1139/w04-118

Wariishi, H. and Gold, M.H., 1990. Lignin peroxidase compound III. Mechanism of formation and decomposition. Journal of Biological Chemistry, 265(4), pp. 2070-2077. https://doi.org/10.1016/S0021-9258(19)39941-7

Wariishi, H., Valli, K. and Gold, M.H., 1992. Manganese (II) oxidation by manganese peroxidase from the basidiomycete Phanerochaete chrysosporium. Kinetic mechanism and role of chelators. The Journal of biological chemistry, 267(33), pp. 23688-23695. https://www.jbc.org/article/S0021-9258(18)35893-9/pdf

Yu, X., Liu, Y., Cui, Y., Cheng, Q., Zhang, Z., Lu, J.H., Meng, Q., Teng, L. and Ren, X., 2016. Measurement of filter paper activities of cellulase with microplate-based assay. Saudi Journal of Biological Sciences, 23(1), pp. S93-S98. https://doi.org/10.1016/j.sjbs.2015.06.018

Zhou, S., Zhang, J., Ma, F., Tang, C., Tang, Q. and Zhang, X., 2018. Investigation of lignocellulolytic enzymes during different growth phases of Ganoderma lucidum strain G0119 using genomic, transcriptomic and secretomic analyses. Plos One, 13(5), pp. 1-20. https://doi.org/10.1371/journal.pone.0198404

Zhou, X.-W., Cong, W.-R., Su, K.-Q. and Zhang, Y.-M., 2012. Ligninolytic enzymes from Ganoderma spp: Current status and potential applications. Critical Reviews in Microbiology, 39(4), pp. 416-426. https://doi.org/10.3109/1040841x.2012.722606




URN: http://www.revista.ccba.uady.mx/urn:ISSN:1870-0462-tsaes.v28i1.57050

DOI: http://dx.doi.org/10.56369/tsaes.5705



Copyright (c) 2025 Guillermo Mendoza-Cervantes, Stephanie Hernández-González, Oswaldo Guzmán-López

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.