METHODS FOR ANALYSIS OF MICROORGANISMS IN SOILS: A REVIEW

Judi Judith Esquivel-Marín, Francisco Guadalupe Echavarría-Cháirez, Romulo Bañuelos-Valenzuela, Nancy Harlet Esquivel-Marín, Luís Roberto Reveles-Torres

Abstract


Background. Bibliometric analysis and the study of the state of the art are two essential tools to understand the research in the field of analysis of microorganisms in soils. Objective. To analyze, through a literature review, the different methods that exist to study soil microbial diversity. Methodology. The review was carried out in two phases. The first phase consisted in carrying out a state of the art on the main biological and molecular-based methods that have been used to analyze soil microbial diversity, the second phase consisted in a bibliometric analysis, carried out with the help of two software, where revealed the main trends and contributions of the publications, as well as the most influential authors in the field. Results. The main lines of research where techniques are used to analyze edaphic communities are: bioremediation, phylogenetic relationships, agricultural productivity, phytoremediation, nitrification, actinobacteria, molecular ecology and sustainable agriculture. It was found that 358 articles on biological methods and 1468 articles on molecular basis have been published and the latter are the most cited. Implications. Molecular techniques standout as the most frequently used due to their greater precision and great diversity of microorganism identified in soils. Conclusions. China is the most innovative country in this field and is focusing on molecular-based methods.

Keywords


edaphic communities; traditional techniques; molecular techniques.

Full Text:

PDF

References


Abastabar, M., Shabanzadeh, S., Valadan, R., Mayahi, S., Haghani, I., Khojasteh, S., Nargesi, S., Seyedmousavi, S. and Hedayati, M.T., 2022. Development of RFLP method for rapid differentiation of Aspergillus flavus and Aspergillus oryzae, two species with high importance in clinical and food microbiology. Journal of Medical Mycology, 32(3), pp. 101274-101274. https://doi.org/10.1016/j.mycmed.2022.101274

Afanador B.L.N., 2017. Biofertilizantes: conceptos, beneficios y aplicación en Colombia. Ingeciencia, vol 2, Num 1 P 65-76.

Amy, P.S. and Morita, R.Y., 1983. Starvation-survival patterns of sixteen freshly isolated open-ocean bacteria. Applied and Environmental Microbiology, 45(3), pp. 1109-1115. https://doi.org/10.1128/aem.45.3.1109-1115.1983.

Aria, M. and Cuccurullo, C., 2017. Bibliometrix: An R-tool for comprehensive science mapping analysis. Journal of Informetrics, 11(4), pp. 959-975. https://doi.org/10.1016/j.joi.2017.08.007

Arias, N.M.M. and Sánchez-Yañez, J.M., 2014. Nitrificación en suelos tropicales, asunto de competencia microbiana: un modelo basado en la teoría de Lotka-Volterra. Ecosistemas, 23(3), pp. 98-104. https://doi.org/10.7818/ECOS.2014.23-3.13

Avarre, J.-C., de Lajudie, P. and Béna, G., 2007. Hybridization of genomic DNA to microarrays: A challenge for the analysis of environmental samples. Journal of Microbiological Methods, 69(2), pp. 242-248. https://doi.org/10.1016/j.mimet.2006.11.007

Bender, S.F., Wagg, C. and van der Heijden, M.G.A., 2016. Underground Revolution: Biodiversity and Soil Ecological Engineering for Agricultural Sustainability. Trends in Ecology & Evolution, 31(6), pp. 440-452. https://doi.org/10.1016/j.tree.2016.02.016

Bonilla-Rosso, G., Souza, V. and Eguiarte, L.E., 2008. Metagenómica, genómica y ecología molecular: la nueva ecología en el bicentenario de Darwin. Revista Especializada en Ciencias Químico-Biológicas, 11(1), pp. 41-51.

Brightwell, G. and Horváth, K.M., 2018. Molecular discrimination of New Zealand sourced meat spoilage associated psychrotolerant Clostridium species by ARDRA and its comparison with 16s RNA gene sequencing. Meat Science, 138 pp. 23-27. https://doi.org/10.1016/j.meatsci.2017.12.007.

Chadalavada, D.M. and Bevilacqua, P.C.B.T., 2009. Chapter 18 - Analyzing RNA and DNA Folding Using Temperature Gradient Gel Electrophoresis (TGGE) with Application to In Vitro Selections. Methods in Enzymology, 468 pp. 389-408. https://doi.org/10.1016/S0076-6879(09)68018-6

Cherif, H., Ouzari, H., Marzorati, M., Brusetti, L., Jedidi, N., Hassen, A. and Daffonchio, D., 2008. Bacterial community diversity assessment in municipal solid waste compost amended soil using DGGE and ARISA fingerprinting methods. World Journal of Microbiology and Biotechnology, 24(7), pp. 1159-1167. https://doi.org/10.1007/s11274-007-9588-z

Cho, J.C. and Tiedje, J.M., 2001. Bacterial species determination from DNA-DNA hybridization by using genome fragments and DNA microarrays. Applied and Environmental Microbiology, 67(8), pp. 3677-3682. https://doi.org/10.1128/AEM.67.8.3677-3682.2001

Clegg, C., Ritz, K. and Griffiths, B., 2000. %G+C profiling and cross hybridisation of microbial DNA reveals great variation in below-ground community structure in UK upland grasslands. Applied Soil Ecology, 14 pp. 125-134. https://doi.org/10.1016/S0929-1393(00)00045-7

Covarrubias, S.A., Berumen, J.A.G. and Cabriales, J.J.P., 2015. El papel de los microorganismos en la biorremediación de suelos contaminados con metales pesados. Acta Universitaria, 25 pp. 40-45. https://doi.org/10.15174/au.2015.907

Degens, B.P. and Harris, J.A., 1997. Development of a physiological approach to measuring the catabolic diversity of soil microbial communities. Soil Biology and Biochemistry, 29(9), pp. 1309-1320. https://doi.org/10.1016/S0038-0717(97)00076-X

Deshoux, M., Sadet-Bourgeteau, S., Gentil, S. and Prévost-Bouré, N.C., 2023. Effects of biochar on soil microbial communities: A meta-analysis. Science of The Total Environment, 902 pp. 166079-166079. https://doi.org/10.1016/j.scitotenv.2023.166079

Didehdar, M., Shokohi, T., Khansarinejad, B., Ali Asghar Sefidgar, S., Abastabar, M., Haghani, I., Amirrajab, N., Mondanizadeh, M., 2016. Characterization of clinically important dermatophytes in North of Iran using PCR-RFLP on ITS region. Journal de Mycologie Médicale, 26(4), pp. 345-350. https://doi.org/10.1016/j.mycmed.2016.06.006

Domsch, K.H. Beck., T.H., Anderson, J.P.E., Söderströn, B., Parkinson, D. and Trolldenier, G., 1979. A comparison of methods for soil microbial population and biomass studies. Zeitschrift für Pflanzenernährung und Bodenkunde, 142(3), pp. 520-533. https://doi.org/10.1002/jpln.19791420322

Dong, J. Yang, B., Wang, H., Cao, X., He, F. and Wang, L., 2023. Reveal molecular mechanism on the effects of silver nanoparticles on nitrogen transformation and related functional microorganisms in an agricultural soil. Science of The Total Environment, 904 pp. 166765-166765. https://doi.org/10.1016/j.scitotenv.2023.166765

Esquivel-Marín, N.H., Sagarnagavillegas, L.M., Barrera-Perales, O.T., Leos-Rodríguez, J.A., Salas-González, J.M., 2023. Multifunctional agriculture in the framework of the Sustainable Development Goals (SDGs): Bibliometric review. Acta Universitatis Sapientiae, Agriculture and Environment, 15(1), pp. 36-51. https://doi.org/10.2478/ausae-2023-0004

Fischer, S. and Lerman, L., 1983. DNA fragments differing by single base-pair substitutions are separated in denaturing gradient gels: correspondence with melting theory. Proceedings of the National Academy of Sciences, 80(6), pp. 1579-1583. https://doi.org/10.1073/pnas.80.6.1579

Fisher, M.M. and Triplett, E.W., 1999. Automated approach for ribosomal intergenic spacer analysis of microbial diversity and its application to freshwater bacterial communities. Applied and Environmental Microbiology, 65(10), pp. 4630-4636. https://doi.org/10.1128/AEM.65.10.4630-4636.1999

Forliano, C., De Bernardi, P. and Yahiaoui, D., 2021. Entrepreneurial universities: A bibliometric analysis within the business and management domains. Technological Forecasting and Social Change, 165 pp. 120522. https://doi.org/10.1016/j.techfore.2020.120522

Garland, J.L. and Mills, A.L., 1991. Classification and characterization of heterotrophic microbial communities on the basis of patterns of community-level sole-carbon-source utilization. Applied and Environmental Microbiology, 57(8), pp. 2351-2359. https://doi.org/10.1128/aem.57.8.2351-2359.1991

Grammatico, P., Costanzi, S., Vigneti, E., Plane, M., Roccella, M., Roccella, F. and Del Porto, G., 1992. Cytogenetic, immunohistochemical and molecular analysys of p53 gene by TGGE and DGGE gel electrophoresis in 14 primary melanoma cell cultures. Cancer Genetics and Cytogenetics, 63(2), pp. 116-116. https://doi.org/10.1016/0165-4608(92)90414-4

Griffiths, B.S., D??az-Raviña, M., Ritz, K., McNicol, J.W., Ebblewhite, N. and Bååth, E., 1997. Community DNA hybridisation and %G+C profiles of microbial communities from heavy metal polluted soils. FEMS Microbiology Ecology, 24 pp. 103-112. https://doi.org/10.1016/S0168-6496(97)00050-0

Haosagul, S., Oaew, S., Prommeenate, P., Sawasdee, V. and Pisutpaisal, N., 2021. DNA microarray for detection and identification of sulfur oxidizing bacteria in Biogas Clean-up System. Energy Reports, 7 pp. 559-568. https://doi.org/10.1016/j.egyr.2021.07.097

Hartmann, M., Frey, B., Kölliker, R. and Widmer, F., 2005. Semi-automated genetic analyses of soil microbial communities: Comparison of T-RFLP and RISA based on descriptive and discriminative statistical approaches. Journal of Microbiological Methods, 61 pp. 349-360. https://doi.org/10.1016/j.mimet.2004.12.011

Higa, T. and Parr, J.F., 2013. Microorganismos Benéficos y efectivos para una agricultura y medio ambiente sostenibles. Maryland (USA): Centro internacional de Investigación de Agricultura Natural, Departamento de Agricultura de los Estados Unidos, 13(2), pp. 128-135

Ingianni, A., Petruzzelli, S., Morandotti, G. and Pompei, R., 1997. Genotypic differentiation of Gardnerella vaginalis by amplified ribosomal DNA restriction analysis (ARDRA). FEMS Immunology & Medical Microbiology, 18(1), pp. 61-66. https://doi.org/10.1111/j.1574-695X.1997.tb01028.x

Jae-Chang, C. and M, T.J., 2000. Biogeography and Degree of Endemicity of Fluorescent Pseudomonas Strains in Soil. Applied and Environmental Microbiology, 66(12), pp. 5448-5456. https://doi.org/10.1128/AEM.66.12.5448-5456.2000

Jami, E., Shterzer, N. and Mizrahi, I., 2014. Evaluation of automated ribosomal intergenic spacer analysis for bacterial fingerprinting of rumen microbiome compared to pyrosequencing technology. Pathogens, 3 pp. 109-120. https://doi.org/10.3390/pathogens3010109

Jansson J.K., McClure R. and Egbert R.G., 2023. Soil microbiome engineering for sustainability in a changing environment. Nature Biotechnology, 41,1716-1728. https://doi.org/10.1038/s41587-023-01932-3

Johnson, J.L., 1985. 2 DNA Reassociation and RNA Hybridisation of Bacterial Nucleic Acids. Methods in Microbiology, 18 pp. 33-74. https://doi.org/10.1016/S0580-9517(08)70471-9

Junca, H. and Pieper, D.H., 2004. Functional gene diversity analysis in BTEX contaminated soils by means of PCR-SSCP DNA fingerprinting: comparative diversity assessment against bacterial isolates and PCR-DNA clone libraries. Environmental Microbiology, 6(2), pp. 95-110. https://doi.org/10.1046/j.1462-2920.2003.00541.x

Kirk, J.L., Beaudette, L.A., Hart, M., Moutoglis, P., Klironomos, J.N., Lee, H. and Trevors, J.T., 2004. Methods of studying soil microbial diversity. Journal of Microbiological Methods, 58(2), pp. 169-188. https://doi.org/10.1016/j.mimet.2004.04.006

Konopka, A., Oliver, L. and Turco, R.F., Jr., 1998. The Use of Carbon Substrate Utilization Patterns in Environmental and Ecological Microbiology. Microbial ecology, 35(2), pp. 103-115. https://doi.org/10.1007/s002489900065

Konstantinos, K.V., Panagiotis, P., Antonios, V.T., Agelos, P. and Argiris, N.V., 2008. PCR–SSCP: A method for the molecular analysis of genetic diseases. Molecular Biotechnology, 38(2), pp. 155-163. https://doi.org/10.1007/s12033-007-9006-7

Koutsos, T.M., Menexes, G.C. and Dordas, C.A., 2019. An efficient framework for conducting systematic literature reviews in agricultural sciences. Science of The Total Environment, 682 pp. 106-117. https://doi.org/10.1016/j.scitotenv.2019.04.354

Lander, E.S., 1999. Array of hope. Nature Genetics, 21(1), pp. 3-4. https://doi.org/10.1038/4427

Lehman, R.M., Colwell, F.S., Ringelberg, D.B. and White, D.C., 1995. Combined microbial community-level analyses for quality assurance of terrestrial subsurface cores. Journal of Microbiological Methods, 22(3), pp. 263-281. https://doi.org/10.1016/0167-7012(95)00012-A

Lerch, T.Z. et al., 2009. Dynamics of soil microbial populations involved in 2,4-D biodegradation revealed by FAME-based Stable Isotope Probing. Soil Biology and Biochemistry, 41(1), pp. 77-85. https://doi.org/10.1016/j.soilbio.2008.09.020

Li, X., Zhang, H., Wu, M., Zhang, Y. and Zhang, C., 2008. Effect of methamidophos on soil fungi community in microcosms by plate count, DGGE and clone library analysis. Journal of Environmental Sciences, 20(5), pp. 619-625. https://doi.org/10.1016/S1001-0742(08)62103-8

Lozada, A.E., Lagarda, G.G., Jiménez, A.M. and Zapata, F.B., 2004. Diversidad bacteriana del suelo: métodos de estudio no dependientes del cultivo microbiano e implicaciones biotecnológicas. Agrociencia, 38(6), pp. 583-592.

Lukow, T., 2000. Use of the T-RFLP technique to assess spatial and temporal changes in the bacterial community structure within an agricultural soil planted with transgenic and non-transgenic potato plants. FEMS Microbiology Ecology, 32 pp. 241-247. https://doi.org/10.1016/S0168-6496(00)00033-7

Malanski, P.D., Dedieu, B. and Schiavi, S., 2021. Mapping the research domains on work in agriculture. A bibliometric review from Scopus database. Journal of Rural Studies, 81 pp. 305-314. https://doi.org/10.1016/j.jrurstud.2020.10.050

Martinho, V.J.P.D., 2018. Interrelationships between renewable energy and agricultural economics: An overview. Energy Strategy Reviews, 22 pp. 396-409. https://doi.org/10.1016/j.esr.2018.11.002

Miller, O.K., Johnson, J.L., Burdsall, H.H. and Flynn, T., 1994. Species delimitation in North American species of Armillaria as measured by DNA reassociation. Mycological Research, 98(9), pp. 1005-1011. https://doi.org/10.1016/S0953-7562(09)80426-7

Mink, R.W., Patterson, J.A. and Hespell, R.B., 1982. Changes in Viability, Cell Composition, and Enzyme Levels During Starvation of Continuously Cultured (Ammonia-Limited) Selenomonas ruminantium. Applied and Environmental Microbiology, 44(4), pp. 913-922. https://doi.org/10.1128/aem.44.4.913-922.1982

Miura, T., Makoto, K., Niwa, S., Kaneko, N. and Sakamoto, K., 2017. Comparison of fatty acid methyl ester methods for characterization of microbial communities in forest and arable soil: Phospholipid fraction (PLFA) versus total ester linked fatty acids (EL-FAME). Pedobiologia, 63, pp. 14-18. https://doi.org/10.1016/j.pedobi.2017.04.002

Moher, D., Liberati, A., Tetzlaff, J. and Altman, D.G., 2009. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. BMJ, pp.339 https://doi.org/10.1136/bmj.b2535

Montaño, N.M., Sánchez-Yañez J.M., 2014. Nitrificación en suelos tropicales, asunto de competencias microbiana: un modelo basado en la teoria de Lotka-Volterra. Ecosistemas, 23(3), pp.98-104. https://doi.org/10.7818/ECOS.2014.23-3.13

Moore, R.L., 1974. Nucleic acid reassociation as a guide to genetic relatedness among bacteria. In W. Arber, et al. ed. Current Topics in Microbiology and Immunology. Berlin, Springer. pp. 105-128.

Mrozik, A., Piotrowska-Seget, Z. and ?abu?ek, S., 2008. FAMEs profiles of phenol-degrading Pseudomonas stutzeri introduced into soil. International Biodeterioration & Biodegradation, 62(3), pp. 319-324. https://doi.org/10.1016/j.ibiod.2008.03.009

Muyzer, G., 1999. DGGE/TGGE a method for identifying genes from natural ecosystems. Current Opinion in Microbiology, 2(3), pp. 317-322. https://doi.org/10.1016/S1369-5274(99)80055-1

Muyzer, G. and Smalla, K., 1998. Application of denaturing gradient gel electrophoresis (DGGE) and temperature gradient gel electrophoresis (TGGE) in microbial ecology. Antonie van Leeuwenhoek, 73(1), pp. 127-141. https://doi.org/10.1023/a:1000669317571

Myers, R.M., Fischer, S.G., Lerman, L.S. and Maniatis, T., 1985. Nearly all single base substitutions in DNA fragments joined to a GC-clamp can be detected by denaturing gradient gel electrophoresis. Nucleic Acids Research, 13(9), pp. 3131-3145. https://doi.org/10.1093/nar/13.9.3131

Nazih, N., Finlay-Moore, O., Hartel, P.G. and Fuhrmann, J.J., 2001. Whole soil fatty acid methyl ester (FAME) profiles of early soybean rhizosphere as affected by temperature and matric water potential. Soil Biology and Biochemistry, 33(4), pp. 693-696. https://doi.org/10.1016/S0038-0717(00)00197-8

Nkongolo, K.K. and Narendrula-Kotha, R., 2020. Advances in monitoring soil microbial community dynamic and function. Journal of Applied Genetics, 61(2), pp. 249-263. https://doi.org/10.1007/s13353-020-00549-5

Olsen, R.A. and Bakken, L.R., 1987. Viability of soil bacteria: Optimization of plate-counting technique and comparison between total counts and plate counts within different size groups. Microbial Ecology, 13(1), pp. 59-74. https://doi.org/10.1007/BF02014963

Özay, B. and McCalla, S.E., 2021. A review of reaction enhancement strategies for isothermal nucleic acid amplification reactions. Sensors and Actuators Reports, 3 pp. 100033-100033. https://doi.org/10.1016/j.snr.2021.100033

Pesaro, M., Nicollier, G., Zeyer, J. and Widmer, F., 2004. Impact of soil drying-rewetting stress on microbial communities and activities and on degradation of two crop protection products. Applied and Environmental Microbiology, 70(5), pp. 2577-2587. https://doi.org/10.1128/AEM.70.5.2577-2587.2004

Ramsey, P.W. et al., 2006. Choice of methods for soil microbial community analysis: PLFA maximizes power compared to CLPP and PCR-based approaches. Pedobiologia, 50(3), pp. 275-280. https://doi.org/10.1016/j.pedobi.2006.03.003

Ritz, K., Griffiths, B.S., Torsvik, V.L. and Hendriksen, N.B., 1997. Analysis of soil and bacterioplankton community DNA by melting profiles and reassociation kinetics. FEMS Microbiology Letters, 149(2), pp. 151-156. https://doi.org/10.1016/S0378-1097(97)00056-6

Sadet-Bourgeteau, S., Philippeau, C., Dequiedt, S. and Julliand, V., 2014. Comparison of the bacterial community structure within the equine hindgut and faeces using Automated Ribosomal Intergenic Spacer Analysis (ARISA). Animal, 8(12), pp. 1928-1934. https://doi.org/10.1017/S1751731114001943

Saleh-Lakha, S., Miller, M., Campbell, R.G., Schneider, K., Elahimanesh, P., Hart, M.M. and Trevors, J.T., 2005. Microbial gene expression in soil: methods, applications and challenges. Journal of Microbiological Methods, 63(1), pp. 1-19. https://doi.org/10.1016/j.mimet.2005.03.007

Schütte, U.M., Abdo, Z., Bent, S.J., Shyu, C., Williams, C.J., Pierson, J.D. and Forney, L.J., 2008. Advances in the use of terminal restriction fragment length polymorphism (T-RFLP) analysis of 16S rRNA genes to characterize microbial communities. Applied Microbiology and Biotechnology, 80 pp. 365-380. https://doi.org/10.1007/s00253-008-1565-4

Selenska-Pobell, S., Kampf, G., Flemming, K., Radeva, G. and Satchanska, G., 2001. Bacterial diversity in soil samples from two uranium waste piles as determined by rep-APD, RISA and 16S rDNA retrieval. Antonie van Leeuwenhoek, 79(2), pp. 149-161. https://doi.org/10.1023/A:1010237711077

Shi, Z., Zhang, J. and Wei, H., 2020. Research progress on soil seed bank: A bibliometrics analysis. Sustainability, 12(12), pp. 4888. https://doi.org/10.3390/su12124888

Smith, M.J., Britten, R.J. and Davidson, E.H., 1975. Studies on nucleic acid reassociation kinetics: reactivity of single-stranded tails in DNA-DNA renaturation. Proceedings of the National Academy of Sciences, 72(12), pp. 4805-4809. https://doi.org/10.1073/pnas.72.12.4805

Stokke, T., Collins, C., Kuo, W-L., Kowbel, D., Shadravan, F., Tanner, M., Kallioniemi, A., Kallioniemi, O-P., Pinkel, D., Deaven, L. and Gray, J.W., 1995. A physical map of chromosome 20 established using fluorescence in situ hybridization and digital image analysis. Genomics, 26(1), pp. 134-137. https://doi.org/10.1016/0888-7543(95)80092-Z

Torrella, F. and Morita, R.Y., 1981. Microcultural study of bacterial size changes and microcolony and ultramicrocolony formation by heterotrophic bacteria in seawater. Applied and Environmental Microbiology, 41(2), pp. 518-527. https://doi.org/10.1128/aem.41.2.518-527.1981

Van Eck, N. and Waltman, L., 2010. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics, 84(2), pp. 523-538. https://doi.org/10.1007/s11192-009-0146-3

Vestal, J.R. and White, D.C., 1989. Lipid analysis in microbial ecology. BioScience, 39(8), pp. 535-541. https://doi.org/10.2307/1310976

Viljoen, B.C., Kock, J.L. and Lategan, P.M., 1986a. Fatty acid composition as a guide to the classification of selected genera of yeasts belonging to the Endomycetales. Microbiology, 132(8), pp. 2397-2400. https://doi.org/10.1099/00221287-132-8-2397

Viti, C. and Giovannetti, L., 2005. Characterization of cultivable heterotrophic bacterial communities in Cr-polluted and unpolluted soils using Biolog and ARDRA approaches. Applied Soil Ecology, 28(2), pp. 101-112. https://doi.org/10.1016/j.apsoil.2004.07.008

Wang, Z., Zhang, H., Xiong, Y., Zhang, L., Cui, J., Li, G., Du, C. and Wen, K., 2023. Remediation mechanism of high concentrations of multiple heavy metals in contaminated soil by sedum alfredii and native microorganisms. Journal of Environmental Sciences, https://doi.org/10.1016/j.jes.2023.10.002

Weisburg, W.G., Barns, S.M., Pelletier, D.A. and Lane, D.J., 1991. 16S ribosomal DNA amplification for phylogenetic study. Journal of Bacteriology, 173(2), pp. 697-703. https://doi.org/10.1128/jb.173.2.697-703.1991

Yafetto, L., 2022. Application of solid-state fermentation by microbial biotechnology for bioprocessing of agro-industrial wastes from 1970 to 2020: A review and bibliometric analysis. Heliyon, 8(3), pp. e09173-e09173. https://doi.org/10.1016/j.heliyon.2022.e09173

Yang, Y., Zhang, Y., Yu, X. and Jia, G., 2023. Soil microorganism regulated aggregate stability and rill erosion resistance under different land uses. CATENA, 228 pp. 107176-107176. https://doi.org/10.1016/j.catena.2023.107176

Zelles, L., Bai, Q.Y., Beck, T. and Beese, F., 1992. Signature fatty acids in phospholipids and lipopolysaccharides as indicators of microbial biomass and community structure in agricultural soils. Soil Biology and Biochemistry, 24(4), pp. 317-323. https://doi.org/10.1016/0038-0717(92)90191-Y




URN: http://www.revista.ccba.uady.mx/urn:ISSN:1870-0462-tsaes.v28i2.56548

DOI: http://dx.doi.org/10.56369/tsaes.5654



Copyright (c) 2025 JUDI JUDITH ESQUIVEL-MARÍN, Francisco Guadalupe Echavarría-Cháirez, ROMULO BAÑUELOS-VALENZUELA, NANCY HARLET ESQUIVEL-MARÍN, LUÍS ROBERTO REVELES-TORRES

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.