CADMIUM TOLERANCE AND RESISTANCE TO DAMAGE BY Bemisia tabaci INDUCED BY A CONSORTIUM OF ARBUSCULAR MYCORRHIZAL FUNGI IN Solanum lycopersicum L.

Shirley Margarita Amaya-Martin, Horacio Salomon Ballina-Gomez, Carlos Juan Alvarado-López, Esau Ruiz-Sánchez, Maria Lourdes Gil-Cardeza, Gabriel De Jesus Azcorra-Perera

Abstract


Background. Cadmium (Cd) is a potentially toxic element that when released in permeable soils such as those of Yucatan enters directly into the horticultural systems and in general into the food web causing several problems. It is known that tomato (Solanum lycopersicum L.) shows tolerance to the element cadmium and resistance to damage by various pests, however, the biological mechanism that is triggered in its interaction with microorganisms under this type of stress conditions is little known. Objective. To analyze the effect of a consortium of arbuscular mycorrhizal fungi on Cd tolerance and resistance to B. tabaci damage in S. lycopersicum L. Methodology. A split-plot design was used with the following factors: 1) mycorrhizal fungal consortium: control (M–) and mycorrhizal fungal (M+); 2) damage by B. tabaci: control (D-) and presence (D+); and 3) addition of Cd at three levels: control (C), Cd at 0.005 ppm (Cd+) and Cd at 0.020 ppm (Cd++). Mycorrhization, growth and plant defense were estimated. Results. Colonization of 39% and 49% was found, even with the addition of Cd+ and Cd++, respectively. Likewise, positive effects of mycorrhizal fungi on plant height growth and leaf thickness were recorded, interestingly despite the addition of cadmium. Also, compensatory growth responses in terms of leaflet production were recorded, but in the absence of mycorrhizal fungi and in the presence of B. tabaci. Additionally, the mycorrhizal fungi produced less hard leaves in the presence of B. tabaci, which suggests an effect of an improvement in the nutritional quality of the leaves. Implications. Plant growth of tomato plants could be as result of inherent plant growth more than other extrinsically factors such as cadmium or B. tabaci. Conclusions. Tomato plants showed positive effects on cadmium tolerance and resistance to damage by B. tabaci, although inherent plant growth could be a very important mechanism to be considered in the future.

Keywords


Plant growth; defense; heavy metals; beneficial microorganisms; tomato.

Full Text:

PDF

References


Aguirre, W., Fischer, G. y Miranda, D., 2011. Tolerancia a metales pesados a través del uso de micorrizas arbusculares en plantas cultivadas. Revista Colombiana de Ciencias Hortícolas, 5, pp. 141-154. https://doi.org/10.17584/rcch.2011v5i1.1260

Arcega-Cabrera, F. and Fargher, L.F., 2016. Education, fish consumption, well water, chicken coops, and cooking fires: Using biogeochemistry and ethnography to study exposure of children from Yucatan, Mexico to metals and arsenic. Science of the Total Environment, 568, pp. 75-82. https://doi.org/10.1016/j.scitotenv.2016.05.209

Ashraf, M., Ozturk, M. and Ahmad, M.S.A., 2010. Toxins and their phytoremediation. In: M. Ashraf, M. Ozturk and M.S.A. Ahmad, eds. Plant Adaptation and Phytoremediation. Springer Netherlands. pp. 1–32.

Baghaie, A.H., Aghili, F. and Jafarinia, R., 2019. Soil-indigenous arbuscular mycorrhizal fungi and zeolite addition to soil synergistically increase grain yield and reduce cadmium uptake of bread wheat (through improved nitrogen and phosphorus nutrition and immobilization of Cd in roots). Environmental Science Pollution Research, 26, pp. 30794-30807. https://doi.org/10.1007/s11356-019-06237-0

Bediní, S., Avio, L., Argese, E. and Giovannetti, M., 2007. Effects of long-term land use on arbuscular mycorrhizal fungi and glomalin-related soil protein. Agriculture, Ecosystems and Environment, 120, pp. 463-6. https://doi.org/10.1016/j.agee.2006.09.010

Bi, Y., Zhang, Y. and Zou, H., 2018. Plant growth and their root development after inoculation of arbuscular mycorrhizal fungi in coal mine subsided areas. International Journal of Coal Science and Technology, 5, pp. 47-53. https://doi.org/10.1007/s40789-018-0201-x

Borjas-Ventura, R.,Bello-Medina, N., Bello-Amez, S., Alvarado-Huamán, L., Rebaza-Fernandez, D., Tapia Y Figueroa, L., Castro-Cepero, V. and Julca-Otiniano, A. 2022. Differentiation cadmium uptake and its effects on the physiology of six cacao genotypes (Theobroma cacao L.) in San Ramón, central Peruvian jungle. Tropical and Subtropical Agroecosystems, 25, pp. #087. https://doi.org/10.56369/tsaes.4000

Caballero-Mellado, J., Onofre, J., Estrada, P. and Martínez, L., 2007. The tomato rhizosphere, and environment rich in nitrogen-fixing Burkholderia species with capabilities of interest for agriculture and bioremediation. Applied and Environmental Microbiology, 73, pp. 5308-5319. https://doi.org/10.1128/AEM.00324-07

Casteblanco, J., 2018. Técnicas de remediación de metales pesados con potencial aplicación en el cultivo de cacao. La Granja: Revista de Ciencias de la Vida, 27, pp. 21-35. https://doi.org/10.17163/lgr.n27.2018.02

Chang, Q., Diao, F., Wang, Q., Pan, L., Dang, Z. and Guo, W., 2018. Effects of arbuscular mycorrhizal symbiosis on growth, nutrient and metal uptake by maize seedlings (Zea mays L.) grown in soils spiked with Lanthanum and Cadmium. Environmental Pollution, 241, pp. 607-615. https://doi.org/10.1016/j.envpol.2018.06.003

Cherian, S. and Oliveira, M., 2005. Transgenic plants in phytoremediation: Recent advances and new possibilities. Environmental Science and Technology, 39, pp. 9377–9390. https://doi.org/10.1021/es051134l

Cornejo, P., Meier, S., Borie, G., Rilling, M. and Borie, F., 2008. Glomalin-related soil protein in a Mediterranean ecosystem affected by a copper smelter and its contribution to Cu and Zn sequestration. Science of The Total Environment, 406, pp. 154–6. http://doi.org/10.1016/j.scitotenv.2008.07.04

Costa, F., Hernández, M. y Moreno, J., 1987. Factores limitantes de la utilización agrícola de los lodos residuales. In: Utilización agrícola de los lodos de depuradora. CSIC. Centro de Edafología y Biología Aplicada del Segura. Murcia, España. pp. 41-60.

Delgado-Oramas, B., 2020. La resistencia inducida como alternativa para el manejo de plagas en las plantas de cultivo. Revista de Protección Vegetal, 35, pp. e07.

Díaz, G., Azcón, C. and Honrubia, M., 1996. Influence of arbuscular mycorrhizae on heavy metal (Zn and Pb) uptake and growth of Lygeum spartum and Anthyllis cytisoides. Plant and Soil, 180, pp. 241–249. https://doi.org/10.1007/BF00015307.

Engelberth, J. and Engelberth, M., 2019. The costs of green leaf volatile-induced defense priming: temporal diversity in growth responses to mechanical wounding and insect herbivory. Plants, 8, pp. 23. https://doi.org/10.3390/plants8010023

Firdaus, S., Van, A., Hidayati, N., Supena E., Visser, R. and Vosman, B., 2012. Resistance to Bemisia tabaci in tomato wild relatives. Euphytica, 187, pp. 31–45. https://doi.org/10.1007/s10681-012-0704-2

Galán-Huertos, E. y Romero-Baena, A., 2008. Contaminación de Suelos por Metales Pesados. MACLA Revista de la Sociedad Español de Minerología, 10, pp. 48-60. https://dialnet.unirioja.es/servlet/articulo?codigo=6404529

Gil-Cardeza, L., Ferri, A., Cornejo, P. and Gómez, E., 2014. Distribution of chromium species in a Cr-polluted soil: Presence of Cr (III) in glomalin related protein fraction. Science of The Total Environment, 493, pp. 828–833. https://doi.org/10.1016/j.scitotenv.2014.06.080

Giovannetti, M. and Mosse, B., 1980. An Evaluation of techniques for measuring vesicular arbuscular mycorrhizal infection in roots. New Phytologist, 84, pp. 489–500. http://www.jstor.org/stable/2432123

González-Klenner, J., Albornoz, V., Ávila, G. and Verdugo, A., 2022. Tomato Defense against Whiteflies under Drought Stress: Non-Additive Effects and Cultivar-Specific Responses. Plants, 11, pp. 1049. https://doi.org/10.3390/plants11081049

Gunathilakae, N., Yapa, N. and Hettiarachchi, R., 2018. Effect of arbuscular mycorrhizal fungi on the cadmium phytoremediation potential of Eichhornia crassipes (Mart.) Solms. Groundwater for Sustainable Development, 7, pp. 477-482. https://doi.org/10.1016/j.gsd.2018.03.008

Hassan, E., Hijri, M. and St-Arnaud, M., 2013. Effect of arbuscular mycorrhizal fungi on trace metal uptake by sunflower plants grown on cadmium contaminated soil. New Biotechnology, 30, pp. 780-787. https://doi.org/10.1016/j.nbt.2013.07.002

Hernández-Baranda, Y., Rodríguez, P., Peña, M., Meriño, Y. and Cartaya, O., 2019. Toxicidad del Cadmio en las plantas y estrategias para disminuir sus efectos. Estudio de caso: El tomate. Cultivos Tropicales, 40, pp. e09. https://ediciones.inca.edu.cu/index.php/ediciones/article/view/1524

Hilje, L. and Morales, J., 2008. Whitefly Bioecology and Management in Latin America. In: J.L Capinera, ed. Encyclopedia of Entomology. Springer: Dordrecht. pp. 4250-4260.

Järup, L., 2003. Peligros de contaminación por metales pesados. Boletín Médico Británico, 68, pp. 167-182. https://doi.org/10.1093/bmb/ldg032

Jiang, J., Moore, A., Priyadarshi, A. and Classen, T., 2017. Plant-mycorrhizal interactions mediate plant community coexistence by altering resource demand. Ecology, 98, pp. 187-197. https://doi.org/10.1002/ecy.1630

Koza, A., Adedayo, A., Babalola, O. and Kappo, P., 2022. Microorganisms in plant growth and development: Roles in abiotic stress tolerance and secondary metabolites secretion. Microorganisms, 10, pp. 1528. https://doi.org/10.3390/microorganisms10081528

Kormanik, P. y McGraw, C., 1982. Cuantificación de micorrizas vesiculares-arbusculares en raíces de plantas. In: Schenk NC, ed. Métodos y principios de investigación de micorrizas. Sociedad Estadounidense de Fitopatología, Saint Paul, MN. pp. 37-46.

Legesse, Y., Jida, M., Puente, M.L., Covacevich, F. and Belay, Z. 2024. Native mycorrhizae from Ethiopia improve tree growth and seedlings survival contributing to the green legacy program. Tropical and Subtropical Agroecosystems, 27, pp. 131. http://doi.org/10.56369/tsaes.5373

Ley-Rivas, F., Sánchez, A., Ricardo, E. y Collazo, E., 2015. Efecto de cuatro especies de hongos micorrizógenos arbusculares en la producción de frutos de tomate. Agronomía Costarricense, 39, pp. 47-59. https://doi.org/10.15517/rac.v39i1.19544

Liu, Y., Song, M., Almeida, N., Tilton, L., Cecava, J. and Stein, H., 2014. Energy concentration and amino acid digestibility in corn and corn coproducts from the wet-milling industry fed to growing pigs. Journal of Animal Science, 92, pp. 4557-65. https://doi.org/10.2527/jas.2014-6747

Locke, H. and Crawford, M., 2022. Arbuscular mycorrhizal fungi mediate how plant herbivory history influences herbivore performance. Ecological Entomology, 47, pp. 590-600. https://doi.org/10.1111/een.13143

Meier, S., Borie, F., Bolan, N. and Cornejo, P., 2012. Phytoremediation of metal-polluted soils by arbuscular mycorrhizal fungi. Critical Reviews in Environmental Science and Technology, 42, pp. 741-775. https://doi.org/10.1080/10643389.2010.528518

Pérez-Moncada, A., Ramírez, M., Serralde, P., Peñaranda, M., Wilches, A., Ramírez, L. y Rengifo, A., 2019. Hongos formadores de micorrizas arbusculares (HFMA) como estrategia para reducir la absorción de cadmio en plantas de cacao (Theobroma cacao). Terra Latinoamericana, 37, pp. 121-130. https://doi.org/10.28940/terra.v37i2.479

Pimienta-Barrios, E., Zañudo, J. y López, E., 2009. Efecto de las micorrizas arbusculares en el crecimiento, fotosíntesis y anatomía foliar de plantas jóvenes de Agave tequilana. Acta Botánica Mexicana, 89, pp. 63-78. https://www.redalyc.org/articulo.oa?id=57412083005

Real-Santillán, O., Del-Val, E., Cruz, R., Contreras, Á., González, E. and Larsen, J., 2019. Increased maize growth and P uptake promoted by arbuscular mycorrhizal fungi coincide with higher foliar herbivory and larval biomass of the fall armyworm Spodoptera frugiperda. Mycorrhiza, 29, pp. 615-622. http://doi.org/10.1007/s00572-019-00920-3

Roy, M. and McDonald, M., 2015. Metal uptake in plants and health risk assessments in metal-contaminated smelter soils. Land Degradation and Development, 26, pp. 785–792. https://doi.org/10.1002/ldr.2237

Santelices, R., Espinoza, S. and Cabrera, M. 2015., Effect of four levels of shade on survival, morphology and chlorophyll fluorescence of Nothofagus alessandrii container-grown seedlings. iForest, 8, pp. 638-641. http://doi.org/10.3832/ifor1321-007

War, R., Paulraj, G., Ahmad, T., Buhroo, A., Hussain, B., Ignacimuthu, S. and Sharma, C., 2012. Mechanisms of plant defense against insect herbivores. Plant Signaling and Behavior, 7, pp. 1306-1320. https://doi.org/10.4161/psb.21663

Zhao, H., Xia, B., Fan, C., Zhao, P. and Shen, S., 2012. Human health risk from soil heavy metal contamination under different land uses near Dabaoshan Mine, Southern China. Science of The Total Environment, 417–418, pp. 45–54. https://doi.org/10.1016/j.scitotenv.2011.12.047




URN: http://www.revista.ccba.uady.mx/urn:ISSN:1870-0462-tsaes.v28i1.56044

DOI: http://dx.doi.org/10.56369/tsaes.5604



Copyright (c) 2025 Shirley Margarita Amaya-Martin, Horacio Salomon Ballina-Gomez, Carlos Juan Alvarado-López, Esau Ruiz-Sánchez, Maria Lourdes Gil-Cardeza, Gabriel De Jesus Azcorra-Perera

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.