DIRECT EMBRYOGENIC EXPRESSION IN Agave cupreata

Laura Acosta Villagran, Amaury Martín Arzate Fernandez, Hilda Guadalupe García Núñez, Sandra Yarenssy Martínez Martínez, Monserrat Hernández Solís, Jesús Ignacio Reyes Díaz

Abstract


Background: Agave cupreata is a specie that can only reproduce by seeds and could take up to 15 years until flowering, placing it at risk of extinction due to its agroindustrial exploitation to produce mezcal. Objective: To evaluate the type of explant, the vitamin complex and 2,4-D concentrations on the direct embryogenic response. Methodology: Explants of leaf, root and stem sections were evaluated. Also, the vitamins MS (Murashige and Skoog, 1962) and L2 (Phillips and Collins, 1979), five concentrations of 2,4-dichlorophenoxyacetic acid (2,4-D), (0.0, 0.1, 0.3, 0.6 and 0.9 mg L-1) and six concentrations of indole-3-acetic acid (IAA), (0.0, 0.1, 0.5, 1.0, 2.0 and 3.0 mg L-1) were assayed for the expression of somatic embryos directly. Results: The leaf explant, the vitamin L2 complex, and the concentration of 0.9 mg L-1 of 2,4-D and 0.5 mg L-1 of IAA turned out to be the most efficient for the formation of pro-embryogenic masses and the expression of direct somatic embryos in the globular state.  Implications: These results lay the groundwork for the future regeneration of A. cupreata plants via direct somatic embryogenesis, potentially facilitating their conservation and mass propagation. This contributes to the sustainability of mezcal; boosts the local economy, preserves biodiversity, and ensures the continued production of this endangered species. Conclusions: For the first time, the successful expression of somatic embryos directly from A. cupreata explants was evidenced.

Keywords


direct somatic embryogenesis; Agave cupreata; type of explant; vitamins; 2,4-dichlorophenoxyacetic acid; indole-3-acetic acid.

Full Text:

PDF

References


Al-Khayri, J.M., 2001. Optimization of biotin and thiamine requirements for somatic embryogenesis of date palm (Phoenix dactylifera L.). In Vitro Cellular & Developmental Biology - Plant, 37(4), pp.453–456. https://doi.org/10.1007/s11627-001-0079-x

Ch, A.-A., Iracheta-Donjuan, L., Gódinez-Aguilar, J., López-Gómez, P. and Barrios-Ayala, A., 2015. Morphological characterization of endemic Agave cupreata species of Mexico. Phyton, 84(1), pp.148–162. https://doi.org/10.32604/phyton.2015.84.148

Fambrini, M., Usai, G. and Pugliesi, C., 2022. Induction of somatic embryogenesis in plants: Different players and focus on WUSCHEL and WUS-RELATED HOMEOBOX (WOX) transcription factors. International Journal of Molecular Sciences, 23(24), p.15950. https://doi.org/10.3390/ijms232415950

Ferreira, J.C.B., De Araújo Silva-Cardoso, I.M., Meira, R.O., Da Silva Costa, F.H. and Scherwinski-Pereira, J.E., 2022. Towards development of an efficient somatic embryogenesis protocol for the palm tree Euterpe precatoria (Mart.) from leaf tissues of adult plants. In Vitro Cellular & Developmental Biology - Plant, 58(5), pp.750–768. https://doi.org/10.1007/s11627-022-10310-8

Goyer, A., 2010. Thiamine in plants: Aspects of its metabolism and functions. Phytochemistry, 71(14–15), pp.1615–1624. https://doi.org/10.1016/j.phytochem.2010.06.022

Kikuchi, A., Sanuki, N., Higashi, K., Koshiba, T. and Kamada, H., 2006. Abscisic acid and stress treatment are essential for the acquisition of embryogenic competence by carrot somatic cells. Planta, 223(4), pp.637–645. https://doi.org/10.1007/s00425-005-0114-y

Loyola-Vargas, V.M. and Ochoa-Alejo, N. eds., 2016. Somatic embryogenesis: Fundamental aspects and applications. [online] Cham: Springer International Publishing. https://doi.org/10.1007/978-3-319-33705-0

Martín, J.P., Pintos, B., Rebordinos, I., Villalobos, N., Guerra, H. and Martín, L., 2000. Embryogenic response in different Medicago arborea L. explants depending on cytokinin/auxin balances. Journal of Plant Physiology, 156(5–6), pp.801–804. https://doi.org/10.1016/S0176-1617(00)80251-5

Martínez-Palacios, A., 2003. Somatic embryogenesis and organogenesis of Agave victoriae-reginae: Considerations for its conservation. Plant Cell, Tissue and Organ Culture, 74(2), pp.135–142. https://doi.org/10.1023/A:1023933123131

Monja-Mio, K.M. and Robert, M.L., 2013. Direct somatic embryogenesis of Agave fourcroydes Lem. through thin cell layer culture. In Vitro Cellular & Developmental Biology - Plant, 49(5), pp.541–549. https://doi.org/10.1007/s11627-013-9535-7

Murashige, T. and Skoog, F., 1962. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiologia Plantarum, 15(3), pp.473–497. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x

Nikam, T.D., Bansude, G.M. and Aneesh Kumar, K.C., 2003. Somatic embryogenesis in sisal (Agave sisalana Perr. ex. Engelm). Plant Cell Reports, 22(3), pp.188–194. https://doi.org/10.1007/s00299-003-0675-9

Ossai, C.O., Balogun, M.O. and Maroya, N.G., 2024. Status and prospects of yam somatic embryogenesis: a pathway for biotechnology applications. In Vitro Cellular & Developmental Biology - Plant. [online] https://doi.org/10.1007/s11627-024-10413-4

Phillips, G.C. and Collins, G.B., 1979. In vitro tissue culture of selected legumes and plant regeneration from callus cultures of red clover. Crop Science, 19(1), pp.59–64. https://doi.org/10.2135/cropsci1979.0011183X001900010014x

Reyes-Díaz, J.I., Arzate-Fernández, A.M., Piña-Escutia, J.L. and Norman-Mondragón, T.H., 2020. The effect of inositol, pyridoxine and thiamine on somatic embryogenesis of Agave angustifolia. Tropical and Subtropical Agroecosystems, [online] 23(1), p.01. https://doi.org/10.56369/tsaes.3007

Reyes-Díaz, J.I., Arzate-Fernández, A.M., Piña-Escutia, J.L. and Vázquez-García, L.M., 2017. Media culture factors affecting somatic embryogenesis in Agave angustifolia Haw. Industrial Crops and Products, 108, pp.81–85. https://doi.org/10.1016/j.indcrop.2017.06.021

Rodríguez-Garay, B., Gutiérrez-Mora, A. and Acosta-Duefias, B., 1996. Somatic embryogenesis of Agave victoria-reginae Moore. Plant Cell, Tissue and Organ Culture, 46(1), pp.85–87. https://doi.org/10.1007/BF00039700

Urbina, C.J.F., Casas, A., Martínez-Díaz, Y., Santos-Zea, L. and Gutiérrez-Uribe, J.A., 2018. Domestication and saponins contents in a gradient of management intensity of agaves: Agave cupreata, A. inaequidens and A. hookeri in central Mexico. Genetic Resources and Crop Evolution, 65(4), pp.1133–1146. https://doi.org/10.1007/s10722-017-0601-6

Vázquez-Delfin, P., Casas, A. and Vallejo, M., 2022. Adaptation and biocultural conservation of traditional agroforestry systems in the Tehuacán Valley: access to resources and livelihoods strategies. Heliyon, 8(7), p.e09805. https://doi.org/10.1016/j.heliyon.2022.e09805

Von Arnold, S., Sabala, I., Bozhkov, P., Dyachok, J. and Filonova, L., 2002. Developmental pathways of somatic embryogenesis. Plant Cell, Tissue and Organ Culture, 69(3), pp.233–249. https://doi.org/10.1023/A:1015673200621




URN: http://www.revista.ccba.uady.mx/urn:ISSN:1870-0462-tsaes.v27i3.56019

DOI: http://dx.doi.org/10.56369/tsaes.5601



Copyright (c) 2024 Amaury Martín Arzate Fernandez, Laura Acosta Villagran, Hilda Guadalupe garcía Núñez, Sandra Yarensy Martínez Martínez, Monserrat Hernández Solís, Jesús Ignacio Reyes Díaz

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.