EVALUATION OF MACHINE LEARNING MODELS FOR BORON PREDICTION IN ANDISOL SOILS OF NARIÑO-COLOMBIA
Abstract
Keywords
Full Text:
PDFReferences
Abbas, F., Afzaal, H., Farooque, A.A. and Tang, S., 2020. Crop yield prediction through proximal sensing and machine learning algorithms. Agronomy, 10(7), p.1046. https://doi.org/10.3390/agronomy10071046
Abraham, S., Huynh, C. and Vu, H., 2020. Classification of Soils into Hydrologic Groups Using Machine Learning. Data, 5(1), pp. 2-11. https://doi.org/10.3390/data5010002
Acuña, A.M. and Molina, P.E.C., 2018. Desempeño funcional del boro en las plantas. UDO Agrícola, 7(1), pp. 1-14. https://www.bioline.org.br/pdf?cg07002
Álvarez Sánchez, D.E., Gómez, E. and Ordoñez, H., 2019. Tipología de fincas productoras de arveja (Pisum sativum L.) en la subregión Sur de Nariño, Colombia. Ciencia y Tecnología Agropecuaria, 20(3), pp. 659–677. https://doi.org/10.21930/rcta.vol20_num3_art:1593
Álvarez Sánchez, D.E., Arévalo Rodríguez, A., Benavides Martínez, I.F., Salazar González, C. and Betancourth García, C., 2023. Use of Trained Convolutional Neural Networks for Analysis of Symptoms Caused by Botrytis fabae Sard. Revista de Ciencias Agrícolas, 40(1), pp. e1198. https://doi.org/10.22267/rcia.20234001.198
Alzate, J.G., Benavides-Cardona, C.A. and Sánchez, D.E.Á., 2022. Aplicación de Urea, DAP y KCl sobre almácigos de café (Coffea arabica L.) de la variedad Castillo. Revista de Investigación Agraria y Ambiental, 13(1), pp. 35-55. https://doi.org/10.22490/21456453.4297
Apráez, E., Gálvez, A. and Apraez, J., 2019. Factores edafoclimáticos en la producción y calidad del pasto Saboya (Holcus lanatus L.) en el Altiplano de Nariño. Revista de Ciencias Agrícolas, 36(1), pp. 16-32. https://doi.org/10.22267/rcia.193601.95
Aworka, R., Cedric, L.S., Adoni, W.Y.H., Zoueu, J.T., Mutombo, F.K., Kimpolo, C.L.M., Nahhal, T. and Krichen, M., 2022. Agricultural decision system based on advanced machine learning models for yield prediction: Case of East African countries. Smart Agricultural Technology, 2, pp. 100-148. https://doi.org/10.1016/j.atech.2022.100048
Barbier, M., 2019. Biodisponibilidad de boro derivado de tres fuentes de boro en dos tipos de suelo. Palmas, 40 (Especial), pp. 158-167. https://publicaciones.fedepalma.org/index.php/palmas/article/view/13045
Bayat, H., Asghari, S., Rastgou, M. and Sheykhzadeh, G.R., 2020. Estimating Proctor parameters in agricultural soils in the Ardabil plain of Iran using support vector machines, artificial neural networks and regression methods. Catena, 189, pp. 10-44. https://doi.org/10.1016/j.catena.2020.104467.
Becerra-Rondón, A., Ducati, J. and Haag, R., 2022. Satellite-based estimation of NO2 concentrations using a machine-learning model: A case study on Rio Grande do Sul, Brazil. Atmósfera, 37, pp. 175- 190. https://doi.org/10.20937/ATM.53116
Bouasria, A., Namr, K.I., Rahimi, A. and Ettachfini, E.M., 2020. Estimate soil organic matter from remote Sensing data by using statistical predictive models. In International Conference on Advanced Intelligent Systems for Sustainable Development, pp. 1106-1115. https://doi.org/10.1007/978-3-030-90633-7_98
Camacho, Y.M., Acosta, D.F., López, C.A., Cely, G.E. and Serrano, P.A., 2020. Transformación electroquímica de un Andisol en relación con la dinámica del fósforo. Biotecnología en el Sector Agropecuario y Agroindustrial, 18(2), pp. 94-102. https://doi.org/10.18684/BSAA(18)94-102
Castro-Rincón, E., Cardona-Iglesias, J.L., Hernández-Oviedo, F., Valenzuela-Chiran, M. and Avellaneda-Avellaneda, Y., 2019. Evaluación de tres cultivares de Lolium perenne L. con vacas lecheras, en el trópico alto de Nariño-Colombia. Pastos y Forrajes, 42(2), pp. 161-170. https://www.redalyc.org/journal/2691/269161217009/html/
Chen, S., Webb, G.I., Liu, L. and Ma, X., 2020. A novel selective naïve Bayes algorithm. Knowledge- Based Systems, 192, pp. 10-53. https://doi.org/10.1016/j.knosys.2019.105361
Choi, E.Y., Park, H.I., Ju, J.H. and Yoon, Y.H., 2015. Boron availability alters its distribution in plant parts of tomato. Horticulture, Environment, and Biotechnology, 56(2), pp. 145-151. https://doi.org/10.1007/s13580-015-0044-y
Culchac, L.Y., Estrada, J.S. and Ordóñez, H.R., 2021. Cuantificación de bacterias nitrificantes en un suelo Typic melanudands en tres condiciones de uso de suelo en Pasto, Nariño, Colombia. Ciencia y Tecnología Agropecuaria, 22(2), pp. 1-15. https://doi.org/10.21930/rcta.vol22_num2_art:1424
El-Sayed, M.A., Abd-Elazem, A.H., Moursy, A.R.A., Mohamed, E.S., Kucher, D.E. and Fadl, M.E., 2023. Integration Vis-NIR spectroscopy and artificial intelligence to predict some soil parameters in arid region: A case study of Wadi Elkobaneyya, South Egypt. Agronomy, 13(3), pp. 35-49. https://doi.org/10.3390/agronomy13030935
Ennaji, O., Vergütz, L. and El Allali, A., 2023. Machine learning in nutrient management: A review. Artificial Intelligence in Agriculture, 9, pp. 1-11. https://doi.org/10.1016/j.aiia.2023.06.001
Galupino, J. and Dungca, J., 2022. Machine learning models to generate a subsurface soil profile: A case of Makati City, Philippines. GEOMATE Journal, 23(95), pp. 57-64. https://geomatejournal.com/geomate/article/view/3029
Instituto Geográfico Agustín Codazzi, 2004. Estudio general de suelos y zonificación de tierras departamento de Nariño. IGAC. 2017. Guía de muestreo. https://antiguo.igac.gov.co
Ismaili, M., Krimissa, S., Namous, M., Htitiou, A., Abdelrahman, K., Fnais, M. S., Lhissou, R., Eloudi, H., Faouzi, E. and Benabdelouahab, T., 2023. Assessment of soil suitability using Machine Learning in arid and semi-arid regions. Agronomy, 13(1), pp. 165-178. https://doi.org/10.3390/agronomy13010165
Kaushik, K., Bhardwaj, A., Dahiya, S., Maashi, M. S., Al Moteri, M., Aljebreen, M. and Bharany, S., 2022. Multinomial Naive Bayesian classifier framework for systematic analysis of smart IoT devices. Sensors, 22(19), pp. 1-16. https://doi.org/10.3390/s22197318
Kebonye, N.M., Agyeman, P.C. and Biney, J.K.M., 2023. Optimized modelling of country wide soil organic carbon levels via an interpretable decision tree. Smart Agricultural Technology, 3, pp. 100-106. https://doi.org/10.1016/j.atech.2022.100106
Lagos, J. and Huertas, J., 2019. Efectos de una enmienda orgánica sobre las propiedades fisicoquímicas de un Andisol, en Túquerres, Nariño, Colombia. Agro sur, 47(3), pp.39-54. https://doi.org/10.4206/agrosur 2019.v47n3-05
Malik, P., Sengupta, S. and Jadon, J.S., 2021. Comparative analysis of soil properties to predict fertility and crop yield using Machine Learning Algorithms. 11th International Conference on Cloud Computing, Data Science & Engineering (Confluence), pp.1004-1007. https://doi.org/10.1109/Confluence51648.2021.9377147
Mallah, S., Delsouz Khaki, B., Davatgar, N., Scholten, T., Amirian-Chakan, A., Emadi, M., Kerry, R., Mosavi, A.H. and Taghizadeh-Mehrjardi, R., 2022. Predicting soil textural classes using Random Forest models: Learning from imbalanced dataset. Agronomy, 12(11), pp. 1-16. https://doi.org/10.3390/agronomy12112613
Marcillo-Paguay, C.A., Benavides-Cardona, C.A., Ramos-Zambrano, H.S. and Romero, J.V., 2022. Respuesta agronómica y económica de papa (Solanum tuberosum subsp. Andigena) a la fertilización diferencial en cuatro ambientes de Nariño, Colombia. Revista Colombiana de Ciencias Hortícolas, 16(2), pp. 1-11. https://doi.org/10.17584/rcch.2022v16i2.13559
Mason-Jones, K., Schmücker, N. and Kuzyakov, Y., 2018. Contrasting effects of organic and mineral nitrogen challenge the N-Mining Hypothesis for soil organic matter priming. Soil Biology and Biochemistry, 124, pp. 38-46. https://doi.org/10.1016/j.soilbio.2018.05.024
Medina, M., Arismendi, J. and Cerón-Muñoz, M., 2019. Descripción de las relaciones entre parámetros químicos en suelos de fincas lecheras del norte de Antioquia, Colombia. Livestock Research for Rural Development, 31(7), pp.#102. http://www.lrrd.org/lrrd31/7/ceron31102.html
Meshram, V., Patil, K., Hanchate, D. and Ramkteke, S.D., 2021. Machine learning in agriculture domain: A state-of-art survey. Artificial Intelligence in the Life Sciences, 1, pp. 1-11. https://doi.org/10.1016/j.ailsci.2021.100010
Mohd, M., Hashim, N., Abd, S. and Lasekan, O., 2022. Characterisation of pineapple cultivars under different storage conditions using infrared thermal imaging coupled with Machine Learning Algorithms. Agriculture, 12(7), pp.1013. https://doi.org/10.3390/agriculture12071013
Novoa, M. A., Miranda, D., & Melgarejo, L., 2018. Efecto de las deficiencias y excesos de fósforo, potasio y boro en la fisiología y el crecimiento de plantas de aguacate (Persea americana, cv. Hass). Revista Colombiana de Ciencias Hortícolas, 12(2), pp. 293-307. http://repositorio.uptc.edu.co/handle/001/2932
Pant, H., Lohani, M.C. and Bhatt, A., 2019. Impact of physico-chemical properties for soils type classification of OAK using different machine learning techniques. International Journal of Computer Applications, 177(17), pp. 38-44. http://doi.org/10.5120/ijca2019919617
Rajkovi?, D., Marjanovi? Jeromela, A., Pezo, L., Lon?ar, B., Zanetti, F., Monti, A., & Kondi? Špika, A., 2021. Yield and quality prediction of winter rapeseed—Artificial neural network and random forest models. Agronomy, 12(1), p.58. https://doi.org/10.3390/agronomy12010058
Ramírez, C.A., 2020. Aplicación del Machine Learning en agricultura de precisión. Revista CINTEX, 25(2), pp. 14-27. https://doi.org/10.33131/24222208.356
Rodríguez-Rodríguez, D.M., Checa-Coral, Ó.E., Ruiz-Eraso, H., Muriel-Figueroa, J. and Yepes- Chamorro, B., 2022. Niveles de fertilización con calcio, magnesio y azufre en genotipos de arveja voluble (Pisum sativum L.) en Nariño. Actualidad & Divulgación Científica, 25(2), pp. 1-8. https://doi.org/10.31910/rudca.v25.n2.2022.1847
Soil Survey Staff., 1999. Soil taxonomy: A basic system of soil classification for making and interpreting soil surveys. 2nd edition. Natural Resources Conservation Service. U.S. Department of Agriculture Handbook 436. https://doi.org/10.1111/j.1475-2743.2001.tb00008.x
Volverás-Mambuscay, B., Merchancano-Rosero, J.D., Campo-Quesada, J.M. and López-Rendón, J.F., 2020. Propiedades físicas del suelo en el sistema de siembra en wachado en Nariño, Colombia. Agronomía Mesoamericana, 31(3), pp. 743-760. https://doi.org/10.15517/am.v31i3.39233
Yepes, J., Oré, G., Alcântara, M.S., Hernandez-Figueroa, H.E. and Teruel, B., 2022. Classification of sugarcane yields according to soil fertility properties using supervised machine learning methods. Engenharia Agrícola, 42(5), pp. 1-9. https://doi.org/10.1590/1809-4430- eng.agric.v42n5e20210239/2022
Zhang, J., He, Y., Yuan, L., Liu, P., Zhou, X., & Huang, Y.,2019. Machine learning-based spectral library for crop classification and status monitoring. Agronomy, 9(9), p.496. https://doi.org/10.3390/agronomy9090496
Zhu, J., Jin, X., Li, S., Han, Y. and Zheng, W., 2022. Prediction of soil available Boron content in Visible- Near-Infrared hyperspectral based on different preprocessing transformations and characteristic wavelengths modeling. Computational Intelligence and Neuroscience, 20(22), pp.1- 16. https://doi.org/10.1155/2022/9748257
Zolfaghari, M., Moradi, M., Moradi, G. and Taghizadeh-Mehrjardi, R., 2023. Machine Learning models for prediction of soil properties in the Riparian Forests. Land, 12(1), pp. 32. https://doi.org/10.3390/land12010032
URN: http://www.revista.ccba.uady.mx/urn:ISSN:1870-0462-tsaes.v28i1.55959
DOI: http://dx.doi.org/10.56369/tsaes.5595
Copyright (c) 2025 Laura Lopez Rivera

This work is licensed under a Creative Commons Attribution 4.0 International License.