ETHNOBOTANY OF USEFUL TREES IN AGROFORESTRY SYSTEMS IN THE SIERRA DE ZONGOLICA, VERACRUZ, MEXICO

Miguel Ángel Vega Ortega, Sergio Ignacio Gallardo Yobal, Adolfo De Jesús Rebolledo Morales, Claudia Ivet Contreras Hernández

Abstract


Background: traditional ecological knowledge generated by different human groups is manifested in the various forms of appropriation of nature, particularly by intervening in the growth processes of plant species to take advantage of them and maintain them in the long term. The sierra of Zongolica is one of the most important indigenous areas in Mexico, where the use of forest resources is part of their livelihoods. There is evidence that in this region trees are used as raw material for furniture, construction, food, charcoal and firewood. Objective: to learn about the diversity, main uses and importance of multipurpose trees within agroforestry systems in the Sierra de Zongolica, Veracruz. Methodology: 74 semi-structured interviews and direct observations were conducted on the land of the interviewees and analyzed using a mixed approach, through a social network analysis to determine the main uses of the trees. Results: A total of 79 species of useful trees were recorded, belonging to 41 taxonomic families, of which the Fabaceae family was the most abundant with 4 species recorded. Sixty-two genera were found, of which the most abundant was the Quercus genus. Ninety-five percent of the informants were men around 50 years of age, demonstrating that they are the ones in charge of the productive activities and that they are the ones with the knowledge about the use and management of the trees. The household is made up of an average of 4 people, which makes it difficult to work in the fields due to the scarcity of family labor, which could jeopardize productive activities because people outside the family must be employed to use and manage the trees. Implications: since wood energy, construction, medicinal and food uses are of vital importance in this work, sustainable management practices should be implemented, such as selective harvesting, replanting and local tree management, so that firewood collection and trade benefit both rural areas and the environment. Conclusions: about 79 useful tree species were identified in Zongolica's agroforestry systems, demonstrating the diversity of natural resources in the region. These species are fundamental to the local economy and environmental conservation, providing firewood, food, medicines and construction materials for local communities. It is crucial to value and protect these forest resources to ensure their continuity and contribute to the sustainability of agroforestry systems in Zongolica.

Keywords


migration; species diversity; charcoal; firewood; Quercus.

Full Text:

PDF

References


Aguilar-Romero, R., García-Oliva, F., Pineda-García, F., Torres, I., Peña-Vega, E., Ghilardi, A. and Oyama, K., 2016. Patterns of distribution of nine Quercus species along an environmental gradient in a fragmented landscape in central Mexico. Botanical Sciences, 94(3), pp. 471-482. https://doi.org/10.17129/botsci.620.

Ahammad, R., Stacey, N. and Sunderland, T., 2021. Determinants of forest and tree uses across households of different sites and ethnicities in Bangladesh. Sustainability: Science, Practice and Policy, 17(1), pp. 231-241. https://doi.org/10.1080/15487733.2021.1930731.

Altieri, M. and Nicholls, C., 2000. Agroecología: teoría y práctica para una agricultura sustentable. México D.F. Programa de las Naciones Unidas para el Medio Ambiente y Red de Formación Ambiental para América Latina y el Caribe.

Ander-Egg, E., 2003. Métodos y técnicas de investigación social IV. Técnicas para la recogida de datos. Argentina. Edit. Lumen/Hvmanitas.

Andersson, J. A. and D'Souza, S., 2014. From adoption claims to understanding farmers and contexts: A literature review of Conservation Agriculture (CA) adoption among smallholder farmers in southern Africa. Agriculture, Ecosystems and Environment, 187, pp. 116-132. https://doi.org/10.1016/j.agee.2013.08.008.

Angelsen, A., Jagger, P., Babigumira, R., Belcher, B., Hogarth, N. J., Bauch, S., Börner, J., Smith-Hall, C. and Wunder, S., 2014. Environmental Income and Rural Livelihoods: A Global-Comparative Analysis. World Development, vol. 64, pp. 12-28. https://doi.org/10.1016/j.worlddev.2014.03.006.

Arizaga, S., Cruz, J. M., Cabrales, M. S. and González, M. Á. B., 2009. Manual de la biodiversidad de encinos michoacanos. Instituto Nacional de Ecología (1a Ed.). México, DF.: INE-SEMARNAT.

Asfaw, B. and Lemenih, M., 2010. Traditional agroforestry systems as a safe haven for woody plant species: a case study from a topo-climatic gradient in South Central Ethiopia. Forests, Trees and Livelihoods, 19(4), pp. 359-377. https://doi.org/10.1080/14728028.2010.9752678.

Bainbridge, D. A., 1986. Quercus, a multi-purpose tree for temperate climates. International Tree Crops Journal, 3(4), pp. 291-298. https://doi.org/10.1080/01435698.1986.9752800.

Bardhan, S., Jose, S., Biswas, S., Kabir, K. and Rogers, W., 2012. Homegarden agroforestry systems: an intermediary for biodiversity conservation in Bangladesh. Agroforestry Systems, 85(1), pp. 29-34. https://doi.org/10.1007/s10457-012-9515-7.

Baumgart-Getz, A., Prokopy, L. S. and Floress, K., 2012. Why farmers adopt best management practice in the United States: A meta-analysis of the adoption literature. Journal of Environmental Management, 96(1), pp. 17-25. https://doi.org/10.1016/j.jenvman.2011.10.006.

Berkes, F., Colding, J. and Folke, C., 2000. Rediscovery of traditional ecological knowledge as adaptive management. Ecological Applications, 10(5), pp. 1251-1262. https://doi.org/10.1890/1051-0761(2000)010[1251:ROTEKA]2.0.CO;2.

Binam, J. N., Place, F., Djalal, A. A. and Kalinganire, A., 2017. Effects of local institutions on the adoption of agroforestry innovations: evidence of farmer managed natural regeneration and its implications for rural livelihoods in the Sahel. Agricultural and Food Economics, 5(1), pp. 1-28. https://doi.org/10.1186/s40100-017-0072-2.

Bilsborrow, R. E., 2002. Migration, population change, and the rural environment. Environmental Change and Security Project Report, 8(1), pp. 69-84.

Borgatti, S. P., Everett M. G. and Freeman, L. C., 2002. UCI-NET 6 for Windows: Software for Social Network Analysis (V.6.29). USA. Harvard Analytic Technologies.

Bray, D. B. and Merino, P. L., 2007. Los bosques comunitarios de México: Manejo sustentable de paisajes forestales. Instituto Nacional de Ecología. México, D.F. Pp. 444.

Carrari, E., Ampoorter, E., Verheyen, K., Coppi, A. and Selvi, F., 2016. Former charcoal platforms in Mediterranean forest areas: a hostile microhabitat for the recolonization by woody species. iForest-Biogeosciences and Forestry, 10(1), pp. 136. https://doi.org/10.3832/ifor1701-009.

Chirinos, O. J., 2006. La racionalidad productiva de la familia campesina. Opción, 22(49), pp. 77-95.

Corbetta, P., 2007. Metodología y técnicas de investigación social. Madrid, España. Mcgraw-Hill.

Del Val, J., Rodríguez, N., Rubio, M., Sánchez-García, C. and Zolla, C., 2008. Los pueblos indígenas y los indicadores de bienestar y desarrollo “Pacto del Pedregal”. Informe preliminar. Documento de trabajo. VII sesión del Fondo Permanente para las Cuestiones Indígenas. México D.F. Organización para las Naciones Unidas.

Depommier, D., 2003. The tree behind the forest: ecological and economic importance of traditional agroforestry systems and multiple uses of trees in India. Tropical Ecology, 44(1), pp. 63-71.

Fredericksen, T. S. and Putz, F. E., 2003. Silvicultural intensification for tropical forest conservation. Biodiversity and Conservation, 12(7), pp. 1445-1453. https://doi.org/10.1023/A:1023673625940.

Gadgil, M. and Vartak, V. D., 1975. Sacred groves of India—a plea for continued conservation. Bombay Natural History Society 72(2), pp. 312–320.

Genin, D., Aumeeruddy-Thomas, Y., Balent, G. and Nasi, R., 2013. The multiple dimensions of rural forests: Lessons from a comparative analysis. Ecology and Society, 18(1), pp. 27. http://dx.doi.org/10.5751/ES-05429-180127.

Hervé, B. and Vidal, S., 2008. Plant biodiversity and vegetation structure in traditional cocoa forest gardens in southern Cameroon under different management. Biodiversity and Conservation, 17(8), pp. 1821-1835. https://doi.org/10.1007/s10531-007-9276-1.

Hrivnák, R., Gömöry, D., Slezák, M., Ujházy, K., Hédl, R., Jar?uška, B. and Ujházyová, M., 2014. Species richness pattern along altitudinal gradient in central European beech forests. Folia Geobotanica, 49, pp. 425-441. https://doi.org/10.1007/s12224-013-9174-0.

INEGI., 2017. Anuario estadístico y geográfico de Veracruz de Ignacio de la Llave 2017. Instituto Nacional de Estadística y Geografía. México, D. F. 1170 pp.

INEGI., 2018. Carta de uso de suelo y vegetación, escala 1: 250,000. Instituto Nacional de Estadística y Geografía. México, D. F.

Isaac, M. E., Erickson, B. H., Quashie-Sam, S. J. and Timmer, V. R., 2007. Transfer of knowledge on agroforestry management practices: the structure of farmer advice networks. Ecology and Society, 12(2), pp.1-23.

Ketlhoilwe, M. J. and Kanene, K. M., 2018. Access to energy sources in the face of climate change: Challenges faced by women in rural communities. Jàmbá: Journal of Disaster Risk Studies, 10(1), pp. 1-8. https://hdl.handle.net/10520/EJC-ecbad684c.

Khan, M. A., Tewari, J. C., Singh, R. and Narain, P., 2006. Structure, production attributes and management strategies in a traditional extensive agroforestry system in an arid region watershed of India. Forests, Trees and Livelihoods, 16(3), pp. 227-246. https://doi.org/10.1080/14728028.2006.9752562.

Li, X., 2019. Study on Protection Ways of Biodiversity in Rural Environment Construction. In IOP Conference Series: Earth and Environmental Science. 252 (4), pp. 1-7. https://doi.org/0.1088/1755-1315/252/4/042020.

Long, A. J. and Nair, P. R., 1999. Trees outside forests: agro-community, and urban forestry. New Forest, 17, pp. 145-174. https://doi.org/10.1007/978-94-017-2689-4_12.

López Binnqüist, C., Gerez-Fernández, P., Vega-Ortega, M. A., Martínez- Barrientos, C. C. and Cerdán-Cabrera, R., 2020. Manejo de sistemas agroforestales con dendroenergía en la Sierra de Zongolica, Veracruz. In A. I. Moreno-Calles M. L. Soto-Pinto M. M. Cariño-Olvera J. M. Palma-García S. Moctezuma-Pérez J. J. Rosales-Adame, P. I. Montañez-Escalante V. J. Sosa-Fernández y M. R. Ruenes-Morales (Eds.), Los sistemas agroforestales de México. Avances, experiencias, acciones y temas emergentes, Red Temática de Sistemas Agroforestales de México, Morelia, México: UNAM, CONACYT, INECOL, ECOSUR.

Luna-José, A. D., Espinosa, L. M. and Aguilar, B. R., 2003. Los usos no leñosos de los encinos en México. Boletín de la Sociedad Botánica de México, Vol. 72, pp. 107-117. https://doi.org/10.17129/botsci.1671.

Malizia, A., Blundo, C., Carilla, J., Osinaga Acosta, O., Cuesta, F., Duque, A., Aguirre, N., Aguirre, Z., Ataroff, M., Baéz, S., Calderón-Loor, M., Cayola, L., Cayuela, L., Ceballos, S., Cedillo, S., Farfán, W., Feeley, K. J., Fuentes, A. F., Gámez Álvarez, L. E., Grau, R., Homeier, J., Jadan, O., Llambi, L. D., Loza Rivera, M. I., Macías, M. J., Malhi, Y., Malizia, L., Peralvo, M., Pinto, E., Tello, S., Silman, M. and Young, K. R., 2020. Elevation and latitude drives structure and tree species composition in Andean forests: Results from a large-scale plot network. PloSOne, 15(4), pp.1-18. https://doi.org/10.1371/journal.pone.0231553.

Martínez-Canales, L. A. M. (2013). Cultura y economía para la sobrevivencia: procesos y relatos desde el etnoterritorio nahua de Tehuipango, en la sierra de Zongolica, Veracruz. Anales de Antropología, 47(1), 73-108.

McNeely, J. A., 2004. Nature vs. nurture: managing relationships between forests, agroforestry and wild biodiversity. In: New Vistas in Agroforestry, pp. 155-165. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-2424-1_11.

Medina-Chena, A., Salazar Chimal, T. E., & Álvarez Palacios, J. L. (2010). Fisiografía y suelos. Gobierno del Estado de Veracruz. Xalapa, Ver. 15p.

Michon, G. and De Foresta, H., 1999. Agro-Forests: Incorporating a Forest Vision in Agroforestry. In Agroforestry in sustainable agricultural systems. USA. CRC Press.

Michon, De Foresta, H., Levang, P. and Verdeaux, F., 2007. Domestic Forests: A new paradigm for integrating local communities’ forestry into tropical forest science. Ecology and Society, 12(2), pp. 1-24. https://www.jstor.org/stable/26267865.

Moreno-Calles, A. I., Luna, V. J. G., Fernández, A. C., Toledo, V. M., Ramos, M. V., Fita, D. S. and Guerrero, A. C., 2014. Etnoagroforestería: El estudio de los sistemas agroforestales tradicionales de México. Etnobiología, 12(3), pp. 1-16.

Müeller-Dombois D. and Ellenberg H., 1974. Aims and methods of vegetation ecology. New York, NY. USA. John Wiley and Sons.

Nair, P. R. (1985). Classification of agroforestry systems. Agroforestry systems, 3, 97-128.

Negi, V. S., Pandey, A., Singh, A., Bahukhandi, A., Pharswan, D. S., Gaira, K. S., Wani, Z. A., Bhata, J. A., Siddiqui, S. and Yassin, H. M., 2024. Elevation gradients alter vegetation attributes in mountain ecosystems of eastern Himalaya, India. Frontiers in Forests and Global Change, 7, pp. 1-13. https://doi.org/10.3389/ffgc.2024.1381488.

Nerfa, L. and Rhemtulla, J. M., 2019. Changes in tree species diversity, composition and aboveground biomass in areas of fuelwood harvesting in miombo woodland ecosystems of southern Malawi. Forests, Trees and Livelihoods, 28(3), pp: 176-193. https://doi.org/10.1080/14728028.2019.1621777.

Ormsby, A. A. and Bhagwat, S. A., 2010. Sacred forests of India: a strong tradition of community-based natural resource management. Environmental Conservation, 37(3), pp. 320-326. https://doi.org/10.1017/S0376892910000561.

Pérez, D. and Matiz-Guerra, L. C., 2017. Use of plants by farming communities in rural areas of Bogota DC, Colombia. Caldasia, 39(1), pp. 68-118.

Pérez-Olvera, C., Dávalos Sotelo, R. and Guerrero Cuaculi, E., 2000. Aprovechamiento de la madera de encino en México. Madera y Bosques, 6(1), pp. 3–13. https://doi.org/10.21829/myb.2000.611338.

Plieninger, T., Hui, C., Gaertner, M. and Huntsinger, L., 2014. The impact of land abandonment on species richness and abundance in the Mediterranean Basin: a meta-analysis. PloS One, 9(5), pp. 1-12. https://doi.org/10.1371/journal.pone.0098355.

Rai, Y. K., Chettri, N., & Sharma, E. (2002). Fuel wood value index of woody tree species from Mamlay watershed in South Sikkim, India. Forests, Trees and Livelihoods, 12(3), pp. 209-219. https://www.tandfonline.com/doi/abs/10.1080/14728028.2002.9752425.

Reyes, T., Quiroz, R. and Msikula, S., 2005. Socio-economic comparison between traditional and improved cultivation methods in agroforestry systems, East Usambara Mountains, Tanzania. Environmental Management, 36(5), pp. 682-690. https://doi.org/10.1007/s00267-004-7269-3.

Robson, J. P. and Berkes, F., 2011. Exploring some of the myths of land use change: can rural to urban migration drive declines in biodiversity? Global Environmental Change, 21(3), pp. 844-854. https://doi.org/10.1016/j.gloenvcha.2011.04.009.

Rodríguez-Sabiote, C., 2003. Nociones y destrezas básicas sobre el análisis de datos cualitativos. El proceso de Investigación en educación, algunos elementos claves. República Dominicana. CLACSO.

Roncal-García, S. M., Soto-Pinto, L., Castellanos-Albores, J., Ramírez-Marcial, N., & de Jong, B. H. (2008). Sistemas agroforestales y almacenamiento de carbono en comunidades indígenas de Chiapas, México. Interciencia, 33(3), pp. 200-206.

Rzedowski, J., 2006. Vegetación de México. 1ra. Edición digital, Comisión Nacional para el Conocimiento y Uso de la Biodiversidad, México, 504 pp.

Saha, N. and Azam, M. A., 2005. Betel leaf-based forest farming by Khasia Tribes: a sustainable system of forest management in Moulvibazar district, Bangladesh. Forests, Trees and Livelihoods, 15(3), pp. 275-290. https://doi.org/10.1080/14728028.2005.9752528.

Shovon, T. A., Auge, H., Haase, J. and Nock, C. A., 2024. Positive effects of tree species diversity on productivity switch to negative after severe drought mortality in a temperate forest experiment. Global Change Biology, 30(3), pp. 1-14. https://doi.org/10.1111/gcb.17252.

SPSS, I. I. B. M., 2019. IBM SPSS statistics for Windows, version 25.0. New York: IBM Corp.

Starke, A. P., Geldenhuys, C. J., O’Connor, T. G., & Everson, C. S. (2020). Forest and woodland expansion into forestry plantations informs screening for native agroforestry species, Maputaland South Africa. Forests, Trees and Livelihoods, 29(1), pp. 1-15. https://repository.up.ac.za/bitstream/handle/2263/72464/Starke_Forest_2019.pdf?sequence=1.

Valencia-Ávalos S. 2004. Diversidad del género Quercus (Fagaceae) en México. Boletín de la Sociedad Botánica de México, 75: pp. 33-53.

Valencia-Ávalos S, Gual-Díaz M. 2014. La familia Fagaceae en el bosque mesófilo de montaña de México. Botanical Sciences, 92: pp. 193-204.

Vallejo, M., Casas, A., Moreno-Calles, A. I. and Blancas, J., 2016. Los sistemas agroforestales del Valle de Tehuacán: una perspectiva regional. En Moreno Calles, A. I., Casas, A., Toledo, V. M. and Vallejo Ramos, M., 2017. Etnoagroforestería en México. Morelia, México. Universidad Nacional Autónoma de México.

Vega?Ortega, M.Á., Llanderal?Mendoza, J., Gerez?Fernández, P. and López Binnqüist, C., 2021. Genetic diversity in oak populations under intensive management for fuelwood in the Sierra de Zongolica, Mexico. Annals of Applied Biology, [online] 178(1), pp.80–97. https://doi.org/10.1111/aab.12639.

Ventura-Aquino, Y., Rendón, B., Rebollar, S. and Hernández, G., 2008. Use and conservation of forest resources in the municipality of San Agustin Loxicha, Sierra Madre del Sur, Oaxaca, Mexico. Agroforestry Systems, 73(3), pp. 167-180. https://doi.org/10.1007/s10457-008-9107-8.

Wajja-Musukwe, T. N., Wilson, J., Sprent, J. I., Ong, C. K., Deans, J. D. and Okorio, J., 2008. Tree growth and management in Ugandan agroforestry systems: effects of root pruning on tree growth and crop yield. Tree Physiology, 28(2), pp. 233-242. https://doi.org/10.1093/treephys/28.2.233.

Wiersum, K. F., 2004. Forest gardens as an ‘intermediate’ land-use system in the nature–culture continuum: Characteristics and future potential. Agroforestry Systems, 61, pp. 123–134. https://doi.org/10.1007/978-94-017-2424-1_9.

Williams, G., 2007. El bosque de niebla del centro de Veracruz: ecología, historia y destino en tiempos de fragmentación y cambio climático. CONABIO. México, DF.




URN: http://www.revista.ccba.uady.mx/urn:ISSN:1870-0462-tsaes.v27i3.55920

DOI: http://dx.doi.org/10.56369/tsaes.5592



Copyright (c) 2024 Miguel Ángel Vega Ortega, Sergio Ignacio Gallardo Yobal, Adolfo De Jesús Rebolledo Morales, Claudia Ivet Contreras Hernández

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.