EXPOSURE OF RAINBOW TROUT FARMING TERRITORY AND LIVELIHOODS TO POTENTIAL EFFECTS OF GLOBAL WARMING IN VERACRUZ, MEXICO

Juan Acosta-Jimeno, Juan L. Reta-Mendiola, Diego E. Platas-Rosado, Alberto Asiain-Hoyos

Abstract


Background. As this century passes, the effects of climate change are being felt in various productive activities, including aquaculture. In particular, trout farming in tropical countries may be at some level of vulnerability to the warming of the water in which it is farmed. Objective. To quantify the degree of exposure, as a component of vulnerability, of trout farming to the possible occurrence of the global warming forecasted effects. Methodology. A spatio-temporal model was constructed to assess one aspect of the vulnerability of finfish aquaculture, by measuring the exposure of the territory and livelihoods of rainbow trout farming to the potential global warming effects in the Neotropical, coastal state of Veracruz, Mexico. Air temperature data from a 100-plus year period, averaged and raster-mapped was used as the baseline, transformed to estimated water temperature, and spatially processed to find the geographic areas suited to grow rainbow trout, or Potential Trout Farming Territory (PTFT). Using the same procedure, optimal water temperature areas were outlined with raster maps from a climate change scenario for three forecasted horizons —short, medium, and long terms—. With these data, the potential loss of territory and livelihoods for trout producers in the area was quantified. Results. The PTFT would undergo a surface reduction of 21.06 km2year1, and at the same time will displace to higher altitudes, given the onset of the chosen climate change scenario RCP 8.5 Wm-2. By the end of the century, Veracruz would have lost 1,851 km2, about 37.6 % of the original PTFT. When this reduction was contrasted in the model with the real trout farming territory (TFT), defined by the actual location of trout farms, a number of farms were being left out of the PTFT on the sequential horizons, at a rate of 0.927 farms year-1. This would mean a 58% exposition of the livelihoods in the long term. Implications. The exposure caused by the reduction of territory and the loss of livelihoods would further affect certain groups of producers, who are exposed a priori. These producers are those who live in poverty below the national average, which significantly aggravates their condition. Conclusion. The results show that global warming potential effects may negatively affect the territory and livelihoods of tens of families, some of which were found to be already in a social and economic degree of vulnerability. This should bring up attention to the implementation of urgent vulnerability-reduction measures.

Keywords


Aquaculture; fish farming; poverty; climate change; vulnerability; GIS modeling.

Full Text:

PDF

References


Abdel-Tawwab, M., Monier, M.N., Hoseinifar, S.H. and Faggio, C., 2019. Fish response to hypoxia stress: growth, physiological, and immunological biomarkers. Fish Physiology and Biochemistry, 45(3), pp.997–1013. https://doi.org/10.1007/s10695-019-00614-9

Abdullah, R., Mustafa, F.B., Bhassu, S., Azhar, N.A.A., Bwadi, B.E., Ahmad, N. and Ajeng, A.A., 2021. Evaluation of water and soil qualities for giant freshwater prawn farming site suitability by using the AHP and GIS approaches in Jelebu, Negeri Sembilan, Malaysia. Malaysia Aims Geosciences, 7(3), pp.507–528. https://doi.org/10.3934/geosci.2021029

Acosta-Jimeno, J., Asiain-Hoyos, A., Platas-Rosado, D.E., Gasca-Leyva, J.F.E. and Reta-Mendiola, J.L., 2018. Tipología del productor de trucha en Veracruz. In: Vinay, V. J. C., V. A. Esqueda E., O. H. Tosquy V., R. Zetina L., A. Ríos U., M. V. Vázquez H., A. L. Del Angel P. y C. Perdomo M. (compilers). Avances en Investigación Agrícola, Pecuaria, Forestal, Acuícola, Pesquería, Desarrollo rural, Transferencia de tecnología, Biotecnología, Ambiente, Recursos naturales y Cambio climático. México: INIFAP, CP, UACH, INAPESCA, UV, TecNM. pp.172–182.

Acosta-Jimeno, J., Devezé-Murillo, P. and Méndez-Guerrero, J., 2018. Variabilidad intraespecífica de la temperatura óptima reportada para el cultivo de peces dulceacuícolas en fase de engorda. Ciencia Pesquera, 26(1), pp.69–80.

Adger, W.N., 2006. Vulnerability. Resilience, Vulnerability, and Adaptation: A Cross-Cutting Theme of the International Human Dimensions Programme on Global Environmental Change, 16(3), pp.268–281. https://doi.org/10.1016/j.gloenvcha.2006.02.006

Aghmashhadi, A.H., Azizi, A., Hoseinkhani, M., Zahedi, S. and Cirella, G.T., 2022. Aquaculture site selection of Oncorhynchus mykiss (Rainbow Trout) in Markazi Province using GIS-Based MCDM. ISPRS International Journal of Geo-Information, 11(3), p.157. https://doi.org/10.3390/ijgi11030157

Agnew, J. ed., 2020. The Confines of Territory. London, UK: Routledge.

Allison, E.H., Adger, W.N., Badjeck, M.C., Brown, K., Conway, D., Dulvy, N.K., Halls, A., Perry, A. and Reynolds, J.D., 2005. Effects of climate change on the sustainability of capture and enhancement fisheries important to the poor: analysis of the vulnerability and adaptability of fisherfolk living in poverty. Final Technical Report. [online] London: Marine Resources Assessment Group Ltd. p.162. Available at: https://agris.fao.org/search/en/providers/122602/records/647356af08fd68d54600f8d2 [Accessed 30 March 2024].

Alwang, J., Siegel, P.B. and Jorgensen, S.L., 2001. Vulnerability: a view from different disciplines. Social Protection Discussion Paper Series. [online] Social Protection Unit, Human Development Network, The World Bank. p.60. Available at: https://documents1.worldbank.org/curated/en/636921468765021121/pdf/multi0page.pdf

Atkinson, A.B., 2019. Measuring Poverty around the World. Princeton, NJ: Princeton University Press.

Ávalos Gutiérrez, C., Cibrián Ramos, J.E. and Ávalos Calderón, C.J., 2012. Estrategia de desarrollo rural regional: Caso Sistema Producto Trucha Mexiquense. Textual (Chapingo), 2012(59), pp.53–72.

Avilés-Quevedo, S. and Vázquez-Hurtado, M., 2006. Fortalezas y Debilidades de la Acuicultura en México. In: Pesca, Acuacultura e Investigación en México, Cámara de Diputados, LIX Legislatura / Congreso de la Unión. [online] México: Centro de Estudios para el Desarrollo Rural Sustentable y la Soberanía Alimentaria. pp.69–86. Available at: http://biblioteca.diputados.gob.mx/janium/bv/cedrssa/lix/pesacu_invmex.pdf

Barange, M., Bahri, T., Beveridge, M.C., Cochrane, K.L., Funge-Smith, S. and Poulain, F., 2018. Impacts of Climate Change on Fisheries and Aquaculture. [online] Rome, IT: FAO. Available at: https://www.fao.org/3/i9705en/i9705en.pdf

Baruah, D., Posti, R., Ganie, P.A. and Kunal, K., 2020. GIS application in mapping and development of trout fisheries resources along Yargyap Chu drainage in Eastern Himalayas. Journal of Krishi Vigyan, 8(2), pp.150–156. https://doi.org/10.5958/2349-4433.2020.00032.X

Betanzo-Torres, E.A., Piñar-Álvarez, M. de los Á., Sandoval-Herazo, L.C., Molina-Navarro, A., Rodríguez-Montoro, I. and González-Moreno, R.H., 2020. Factors that limit the adoption of biofloc technology in aquaculture production in Mexico. Water, 12(10), p.2775. https://doi.org/10.3390/w12102775

Betanzo-Torres, E.A., Piñar-Álvarez, M.D., Sierra-Carmona, C.G., Santamaria, L.E., Loeza-Mejía, C.-I., Marín-Muñiz, J.L. and Sandoval Herazo, L.C., 2021. Proposal of ecotechnologies for tilapia (Oreochromis niloticus) production in Mexico: economic, environmental, and social implications. Sustainability, [online] 13(12). https://doi.org/10.3390/su13126853

Bouchard, P. and Guderley, H., 2003. Time course of the response of mitochondria from oxidative muscle during thermal acclimation of rainbow trout, Oncorhynchus mykiss. Journal of Experimental Biology, 206(19), pp.3455–3465. https://doi.org/10.1242/jeb.00578

Calle Yunis, C.R., Salas López, R., Cruz, S.M.O., Barboza Castillo, E., Silva López, J.O., Iliquín Trigoso, D. and Briceño, N.B.R., 2020. Land suitability for sustainable aquaculture of rainbow trout (Oncorhynchus mykiss) in molinopampa (Peru) based on RS, GIS, and AHP. ISPRS International Journal of Geo-Information, 9(1), p.28. https://doi.org/10.3390/ijgi9010028

Camberos, M. and Bracamontes, J., 2007. Marginación y políticas de desarrollo social: Un análisis regional para Sonora. Problemas del Desarrollo, 38(149), pp.113–135. https://www.scielo.org.mx/scielo.php?pid=S0301-70362007000200006&script=sci_arttext

CONAPESCA, 2024. Anuario Estadístico de Acuacultura y Pesca. [Excel Database download] Comisión Nacional de Acuacultura y Pesca. Available at: https://www.gob.mx/conapesca/documentos/anuario-estadistico-de-acuacultura-y-pesca

CONAPO, 2021. Índice de marginación por localidad 2020. Available at: https://www.gob.mx/cms/uploads/attachment/file/685308/Nota_t_cnica_IML_2020.pdf

Cortés, A., Casillas-Hernández, R., Cambeses-Franco, C., Bórquez-López, R., Magallón-Barajas, F., Quadros-Seiffert, W., Feijoo, G. and Moreira, M.T., 2021. Eco-efficiency assessment of shrimp aquaculture production in Mexico. Aquaculture, 544, p.737145. https://doi.org/10.1016/j.aquaculture.2021.737145

Dabbadie, Aguilar-Manjárrez, J., Beveridge, M.C.M., Bueno, P.B., Ross, L.G. and Soto, D., 2018. Effects of climate change on aquaculture: drivers, impacts and policies. In: Barange, M., T. Bahri, M.C.M. Beveridge, K. Cochrane, S. Funge-Smith and F. Poulain (editors). Impacts of Climate Change on Fisheries and Aquaculture: Synthesis of Currrent Knowledge, Adaptation and Mitigation. Rome, IT: FAO. pp.449–463.

Davidson, J.W., Kenney, P.B., Manor, M., Good, C.M., Weber, G.M., Aussanasuwannakul, A., Turk, P.J., Welsh, C. and Summerfelt, S.T., 2014. Growth performance, fillet quality, and reproductive maturity of rainbow trout (Oncorhynchus mykiss) cultured to 5 kilograms within freshwater recirculating systems. Journal of Aquaculture Research & Development, 5(4), pp.1–9. https://doi.org/10.4172/2155-9546.1000238

Daw, T., Adger, W.N., Brown, K. and Badjek, M.C., 2009. Climate change and capture fisheries: potential impacts, adaptation and mitigation. In: K.E. Cochrane, C. De Young, D. Soto and T. Bahri (eds). Climate Change Implications for Fisheries and Aquaculture: Overview of Current Scientific Knowledge, FAO Fisheries and Aquaculture Technical Papers. [online] Rome, IT: FAO. pp.107–150. Available at: https://www.fao.org/documents/card/en/c/cf7ce082-69ee-542d-a2f2-f55a451ec6b7 [Accessed 30 March 2024].

Ebersole, J.L., Liss, W.J. and Frissell, C.A., 2001. Relationship between stream temperature, thermal refugia and rainbow trout Oncorhynchus mykiss abundance in arid?land streams in the northwestern United States. Ecology of Freshwater Fish, 10(1), pp.1–10. https://doi.org/10.1034/j.1600-0633.2001.100101.x

Elden, S., 2010. Land, terrain, territory. Progress in Human Geography, 34(6), pp.799–817. https://doi.org/10.1177/0309132510362603

Erickson, T.R. and Stefan, H.G., 2000. Linear air/water temperature correlations for streams during open water periods. Journal of Hydrologic Engineering, 5(3), pp.317–321. https://doi.org/10.1061/(ASCE)1084-0699(2000)5:3(317)

Espinosa, D., Ocegueda, S., Aguilar, C., Flores, O. and Llorente, J., 2008. El conocimiento biogeográfico de las especies y su regionalización natural. In: J. Soberón, G. Halffter, J. Llorente-Bousquets (compilers). Capital Natural de México. [online] México. pp.33–65. Available at: https://bioteca.biodiversidad.gob.mx/janium/Documentos/6456.pdf

Espinosa-Pérez, H. and Ramírez, M., 2015. Exotic and invasive fishes in Mexico. Check List, 11(3), pp.1–13. https://doi.org/10.15560/11.3.1627

ESRI, 1998. Shapefile technical description. An ESRI White Paper. [online] Environmental Systems Research Institute, Inc. p.28. Available at: https://www.esri.com/content/dam/esrisites/sitecore-archive/Files/Pdfs/library/whitepapers/pdfs/shapefile.pdf

Falconer, L., Hjøllo, S.S., Telfer, T.C., McAdam, B.J., Hermansen, Ø. and Ytteborg, E., 2020a. The importance of calibrating climate change projections to local conditions at aquaculture sites. Aquaculture, 514, p.734487. https://doi.org/10.1016/j.aquaculture.2019.734487

Falconer, L., Middelboe, A.L., Kaas, H., Ross, L.G. and Telfer, T.C., 2020b. Use of geographic information systems for aquaculture and recommendations for development of spatial tools. Reviews in Aquaculture, 12(2), pp.664–677. https://doi.org/10.1111/raq.12345

Fernández Eguiarte, A., Romero Centeno, R. and Zavala Hidalgo, J., 2014. Metodologías empleadas en el Atlas Climático Digital de México para la generación de mapas de alta resolución. GeoActa, 39(1), pp.165–173. http://www.scielo.org.ar/scielo.php?script=sci_arttext&pid=S1852-77442014000100013

Fernández Eguiarte, A., Zavala Hidalgo, J., Romero Centeno, R., Conde Álvarez, A.C. and Trejo Vázquez, R.I., 2014. Actualización de los escenarios de cambio climático para estudios de impactos, vulnerabilidad y adaptación en México y Centroamérica. [online] UNAM/INECC. p.22. Available at: https://www.researchgate.net/profile/Irma-Trejo/publication/356109909_2015_Actualizacion_escenarios_CC_para_impactos_vulnerabilidad/links/618c5c1e3068c54fa5cd7b44/2015-Actualizacion-escenarios-CC-para-impactos-vulnerabilidad.pdf

Ficke, A.D., Myrick, C.A. and Hansen, L.J., 2007. Potential impacts of global climate change on freshwater fisheries. Reviews in Fish Biology and Fisheries, 17, pp.581–613. https://doi.org/10.1007/s11160-007-9059-5

Franco-Maass, S., Osorio-García, M., Nava-Bernal, G. and Regil-García, H.H., 2009. Evaluación multicriterio de los recursos turísticos: Parque Nacional Nevado de Toluca-México. Estudios y Perspectivas en Turismo, 18(2), pp.208–226. http://www.scielo.org.ar/scielo.php?pid=S1851-17322009000200007&script=sci_arttext

Gall, G.A.E. and Crandell, P.A., 1992. The rainbow trout. Aquaculture, 100(1), pp.1–10. https://doi.org/10.1016/0044-8486(92)90333-G

Ganie, P.A., Posti, R., Baruah, D., Kunal, K., Kunal, G., Sarma, D. and Pandey, P.K., 2023. Land suitability modelling for rainbow trout farming in the Eastern Himalayan Region, India, using GIS–MCE approach. Modeling Earth Systems and Environment, 9(2), pp.2437–2462. https://doi.org/10.1007/s40808-022-01631-z.

García-Mondragón, D., Gallego-Alarcón, I., Espinoza-Ortega, A., García-Martínez, A. and Arriaga-Jordán, C.M., 2013. Desarrollo de la producción de trucha arcoíris (Oncorhynchus mykiss) en el Centro de México. Revista AquaTIC, [online] (38). Available at: http://www.revistaaquatic.com/ojs/index.php/aquatic/article/view/98 [Accessed 27 March 2024].

García-Mondragón, D., Gallego-Alarcón, I., García Pulido, D., Fonseca, C.R., Cervantes-Zepeda, I., García-Mondragón, D., Gallego-Alarcón, I., García Pulido, D., Fonseca, C.R. and Cervantes-Zepeda, I., 2021. Characterization of rural small-scale rainbow trout (Oncorhynchus mykiss) farms in Mexico. Latin American Journal of Aquatic Research, 49(5), pp.828–835. https://doi.org/10.3856/vol49-issue5-fulltext-2454.

Gauchan, D., Thakur, N., Shrestha, B., Rayamajhi, A., Gautam, S. and Lamsal, G., 2008. Market channels of rainbow trout (Oncorhynchus mykiss) products in Nepal. In: T. B. Gurung (ed.). Proceedings of the Workshop on Scaling-up of Rainbow Trout (Oncorhynchus mykiss) Farming Strategies in Nepal. Rainbow trout (Oncorhynchus mykiss) farming strategies in Nepal. Kathmandu, Nepal. pp.77–82. http://dx.doi.org/10.13140/RG.2.1.1492.2405.

GEV/INEGI, 2017. Anuario estadístico y geográfico de Veracruz de Ignacio de la Llave 2017. [online] México: Gonierno del Estado de Veracruz de Ignacio de la Llave / Instituto Nacional de Estadística y Geografía, México. p.1222. Available at: https://www.inegi.org.mx/contenidos/productos/prod_serv/contenidos/espanol/bvinegi/productos/nueva_estruc/anuarios_2017/702825094980.pdf

GEV, S., 2023. El Estado de Veracruz. [online] https://www.veracruz.gob.mx/desarrolloeconomico/el-estado-de-veracruz/. Available at: https://www.veracruz.gob.mx/desarrolloeconomico/el-estado-de-veracruz/ [Accessed 15 August 2023].

Gharti, K., Yan, L., Li, K., Boonpeng, N. and Liu, L., 2023. Growth and muscle quality of grass carp (Ctenopharyngodon idella) in in-pond raceway aquaculture and traditional pond culture. Water, 15(9). https://doi.org/10.3390/w15091771

Giap, D.H., Yi, Y. and Yakupitiyage, A., 2005. GIS for land evaluation for shrimp farming in Haiphong of Vietnam. Ocean & Coastal Management, 48(1), pp.51–63. https://doi.org/10.1016/j.ocecoaman.2004.11.003

Gimpel, A., Stelzenmüller, V., Töpsch, S., Galparsoro, I., Gubbins, M., Miller, D., Murillas, A., Murray, A.G., P?narba??, K., Roca, G. and Watret, R., 2018. A GIS-based tool for an integrated assessment of spatial planning trade-offs with aquaculture. Science of the Total Environment, 627, pp.1644–1655. https://doi.org/10.1016/j.scitotenv.2018.01.133

Golovanov, V.K., 2013. Ecophysiological patterns of distribution and behavior of freshwater fish in thermal gradients. Journal of Ichthyology, 53, pp.252–280. https://doi.org/10.1134/S0032945213030016

Guzmán Hernández, C., Garduño Mendoza, M. and Mendoza Vilchis, R., 2013. Truticultura y el excursionista en áreas rurales. El Periplo Sustentable: revista de turismo, desarrollo y competitividad, (24), pp.99–123. https://dialnet.unirioja.es/servlet/articulo?codigo=4195378

Handisyde, N., Telfer, T.C. and Ross, L.G., 2017. Vulnerability of aquaculture-related livelihoods to changing climate at the global scale. Fish and Fisheries, 18(3), pp.466–488. https://doi.org/10.1111/faf.12186

Harrod, C., Ram?rez, A., Valbo-Jorgensen, J. and Funge-Smith, S., 2019. How climate change impacts inland fisheries (chapter 18). In: M. Barange, T. Bahri, M.C.M. Beveridge, K.L. Cochrane, S. Funge-Smith, F. Poulain (eds.). Impacts of climate change on fisheries and aquaculture: Synthesis of current knowledge, adaptation and mitigation options. Food and Agriculture Organization of the United Nations, FAO FISHERIES AND AQUACULTURE TECHNICAL PAPER. FAO. pp.375–391.

Hendrickson, D.A., Pérez, H.E., Findley, L.T., Forbes, W., Tomelleri, J.R., Mayden, R.L., Nielsen, J.L., Jensen, B., Campos, G.R., Romero, A.V., van der Heiden, A., Camarena, F. and de León, F.J.G., 2002. Mexican native trouts: a review of their history and current systematic and conservation status. Reviews in Fish Biology and Fisheries, 12(2), pp.273–316. https://doi.org/10.1023/A:1025062415188.

Hershberger, W.K., 1992. Genetic variability in rainbow trout populations. Aquaculture, 100(1–3), pp.51–71. https://doi.org/10.1016/0044-8486(92)90339-M

Hossain, M.S. and Das, N.G., 2010. GIS-based multi-criteria evaluation to land suitability modelling for giant prawn (Macrobrachium rosenbergii) farming in Companigonj Upazila of Noakhali, Bangladesh. Computers and Electronics in Agriculture, 70(1), pp.172–186. https://doi.org/10.1016/j.compag.2009.10.003

Huq, M.E., Shoeb, A.Z.M., Hossain, M.A., Fahad, S., Kamruzzaman, M.M., Javed, A., Saleem, N., Adnan, K.M., Sarker, S.A. and Ali, M.Y., 2020. Measuring vulnerability to environmental hazards: qualitative to quantitative. In: S. Fahad, M. Hasanuzzaman, M. AlM, H. Ullah, M. Saeed, I.A. Khan, M. Adnan (eds.). Environment, Climate, Plant and Vegetation Growth. Springer. pp.421–452.

IPCC, 2023. Climate Change 2023: Synthesis Report (Full Volume) Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. [online] Geneva, Switzerland: IPCC / WMO / UNEP. p.169. Available at: https://dx.doi.org/10.59327/IPCC/AR6-9789291691647

Islam, M.J., Kunzmann, A. and Slater, M.J., 2022. Responses of aquaculture fish to climate change?induced extreme temperatures: A review. Journal of the World Aquaculture Society, 53(2), pp.314–366. https://doi.org/10.1111/jwas.12853

Jain, A.G., 2014. The 21st century Atlantis: The international law of statehood and climate change-induced loss of territory. Stanford Journal of International Law, 50, p.1. https://ssrn.com/abstract=2341876

Jari?, I., Lennox, R.J., Kalinkat, G., Cvijanovi?, G. and Radinger, J., 2018. Susceptibility of European freshwater fish to climate change: Species profiling based on life?history and environmental characteristics. Global Change Biology, 25(2), pp.448–458. https://doi.org/10.1111/gcb.14518

Jeppesen, E., Meerhoff, M., Holmgren, K., González-Bergonzoni, I., Teixeira-de Mello, F., Declerck, S.A., De Meester, L., Søndergaard, M., Lauridsen, T.L. and Bjerring, R., 2010. Impacts of climate warming on lake fish community structure and potential effects on ecosystem function. Hydrobiologia, 646, pp.73–90. https://doi.org/10.1007/s10750-010-0171-5

Kalikoski, D.C., Jentoft, S., Charles, A., Salazar, D., Cook, K., Béné, C. and Allison, E.H., 2019. Understanding the impacts of climate change for fisheries and aquaculture: global and regional supply and demand trends and prospects. In: M. Barange, T. Bahri, M.C.M. Beveridge, K.L. Cochrane, S. Funge-Smith, F. Poulain (eds.). Impacts of Climate Change on Fisheries and Aquaculture: Synthesis of Current Knowledge, Adaptation and Mitigation Options. Food and Agriculture Organization of the United Nations, FAO Fisheries and Aquaculture Technical Paper. Rome, IT: FAO. pp.19–39.

Kapetsky, J.M. and Nath, S.S., 1997. A Strategic Assessment of the Potential for Freshwater Fish Farming in Latin America. Rome, IT: FAO.

Keleher, C.J. and Rahel, F.J., 1996. Thermal limits to salmonid distributions in the Rocky Mountain region and potential habitat loss due to global warming: a geographic information system (GIS) approach. Transactions of the American Fisheries Society, 125(1), pp.1–13. https://doi.org/10.1577/1548-8659(1996)125%3C0001:TLTSDI%3E2.3.CO;2

King, D.A., 2004. Climate change science: adapt, mitigate, or ignore? Science, American Association for the Advancement of Science. pp.176–177.

Krishnamurthy, P.K., Lewis, K. and Choularton, R.J., 2014. A methodological framework for rapidly assessing the impacts of climate risk on national-level food security through a vulnerability index. Global Environmental Change, 25, pp.121–132. https://doi.org/10.1016/j.gloenvcha.2013.11.004

Kutty, M.N., 1987. Site selection for aquaculture: Physical features of water. In: Lectures presented at ARAC for the Senior Aquaculturists course, ARAC/87/WP. [online] Port Harcourt, NI: FAO. Available at: https://agris.fao.org/search/en/providers/122621/records/6471d4f877fd37171a704936 [Accessed 29 March 2024].

Leichenko, R. and Silva, J.A., 2014. Climate change and poverty: vulnerability, impacts, and alleviation strategies. Wiley Interdisciplinary Reviews: Climate Change, 5(4), pp.539–556. https://doi.org/10.1002/wcc.287

Li, S., Yang, Z., Nadolnyak, D., Zhang, Y. and Luo, Y., 2016. Economic impacts of climate change: profitability of freshwater aquaculture in China. Aquaculture Research, 47(5), pp.1537–1548. https://doi.org/10.1111/are.12614

de Lima Medeiros, M., Terra, L.A.A. and Passador, J.L., 2020. Geographical indications and territorial development: A soft?system methodology analysis of the Serro Case. Systems Research and Behavioral Science, 37(1), pp.82–96. https://doi.org/10.1002/sres.2601

Little, D., Barman, B.K., Belton, B., Beveridge, M., Bush, S.J., Dabaddle, L., Demaine, H., Edwards, P., Haque, A.M., Kibria, G., Morales, E., Murray, F., Leschen, W., Nandeesha, M.C. and Sukadi, F., 2012. Alleviating poverty through aquaculture: progress, opportunities and improvements. [online] Subasinghe, R.P. et al. (eds). Proceedings of the Global Conference on Aquaculture 2010 – Farming the Waters for People and Food. Phuket, Thailand. pp.719–783. Available at: https://digitalarchive.worldfishcenter.org/handle/20.500.12348/1010 [Accessed 28 March 2024].

Little, D.C., Benoy, K.B., Belton, B., Beveridge, M.C., Bush, S.J., Dabbadie, L., Demaine, H., Edwards, P., Haque, M.M., Kibria, G., Morales, E., Murray, F.J., Leschen, W.A., Nandeesha, M.C. and Sukadi, F., 2010. Alleviating poverty through aquaculture: progress, opportunities and improvements. In: Expert Panel Review 6.2. [online] Proceedings of the Global Conference on Aquaculture 2010 Farming the Waters for People and Food. pp.719–783. Available at: https://www.fao.org/3/i2734e/i2734e00.htm [Accessed 27 March 2024].

López-García, J., Manzo-Delgado, L.L. and Alcántara-Ayala, I., 2014. Rural aquaculture as a sustainable alternative for forest conservation in the Monarch Butterfly Biosphere Reserve, Mexico. Managing and Monitoring Human Impacts on Landscapes for Environmental Change and Sustainability, 138, pp.43–54. https://doi.org/10.1016/j.jenvman.2014.01.035

McCarty, J.J., Canizani, O.F., Leary, N.A., Dokken, D.J. and White, K.S., 2001. Climate Change 2001: Impacts, Adaptation, and Vulnerability: Contribution of Working Group II to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK: Cambridge University Press.

Mengistu, S.B., Palstra, A.P., Mulder, H.A., Benzie, J.A.H., Trinh, T.Q., Roozeboom, C. and Komen, H., 2021. Heritable variation in swimming performance in Nile tilapia (Oreochromis niloticus) and negative genetic correlations with growth and harvest weight. Scientific Reports, 11(1), p.11018. https://doi.org/10.1038/s41598-021-90418-w

Mohseni, O., Erickson, T.R. and Stefan, H.G., 1999. Sensitivity of stream temperatures in the United States to air temperatures projected under a global warming scenario. Water Resources Research, 35(12), pp.3723–3733. https://doi.org/10.1029/1999WR900193

Moine, A., 2006. Le territoire comme un système complexe: un concept opératoire pour l’aménagement et la géographie. L’Espace Géographique, 35(2), pp.115–132. https://doi.org/10.3917/eg.352.0115

Molony, B.W., Church, A.R. and Maguire, Greg.B., 2004. A comparison of the heat tolerance and growth of a selected and non-selected line of rainbow trout, Oncorhynchus mykiss, in Western Australia. Aquaculture, 241(1), pp.655–665. https://doi.org/10.1016/j.aquaculture.2004.08.030

Morkramer, S., Hörstgen-Schwark, G. and Langholz, H.J., 1985. Comparison of different European rainbow trout populations under intensive production conditions. Aquaculture, 44(4), pp.303–320. https://doi.org/10.1016/0044-8486(85)90229-7

Morrill Jean C., Bales Roger C., and Conklin Martha H., 2005. Estimating stream temperature from air temperature: implications for future water quality. Journal of Environmental Engineering, 131(1), pp.139–146. https://doi.org/10.1061/(ASCE)0733-9372(2005)131:1(139)

Moss, R.H., Edmonds, J.A., Hibbard, K.A., Manning, M.R., Rose, S.K., van Vuuren, D.P., Carter, T.R., Emori, S., Kainuma, M., Kram, T., Meehl, G.A., Mitchell, J.F.B., Nakicenovic, N., Riahi, K., Smith, S.J., Stouffer, R.J., Thomson, A.M., Weyant, J.P. and Wilbanks, T.J., 2010. The next generation of scenarios for climate change research and assessment. Nature, 463(7282), pp.747–756. https://doi.org/10.1038/nature08823

Myers, N., 1998. Lifting the veil on perverse subsidies. Nature, 392(6674), pp.327–328. https://doi.org/10.1038/32761

Nguyen, N.H., Ponzoni, R.W., Abu-Bakar, K.R., Hamzah, A., Khaw, H.L. and Yee, H.Y., 2010. Correlated response in fillet weight and yield to selection for increased harvest weight in genetically improved farmed tilapia (GIFT strain), Oreochromis niloticus. Aquaculture, 305(1), pp.1–5. https://doi.org/10.1016/j.aquaculture.2010.04.007

Nitschelm, L., Aubin, J., Corson, M.S., Viaud, V. and Walter, C., 2016. Spatial differentiation in Life Cycle Assessment LCA applied to an agricultural territory: current practices and method development. Journal of Cleaner Production, 112, pp.2472–2484. https://doi.org/10.1016/j.jclepro.2015.09.138

Norzagaray, M., Muñoz, P., Sánchez, L., Capurro, F.L. and Llánes, C.O., 2012. Acuacultura: estado actual y retos de la investigación en México. Revista AquaTIC, 37, pp.20–25. http://www.revistaaquatic.com/ojs/index.php/aquatic/article/view/119

Okamura, B., Hartikainen, H., SCHMIDT?POSTHAUS, H. and Wahli, T., 2011. Life cycle complexity, environmental change and the emerging status of salmonid proliferative kidney disease. Freshwater Biology, 56(4), pp.735–753. https://doi.org/10.1111/j.1365-2427.2010.02465.x

Oliveros, Í., 1995. Política social y gasto público en América Latina. Cuadernos Latinoamericanos, [online] (11). https://produccioncientificaluz.org/index.php/cuadernos/article/view/15481

Ortega, C. and Valladares, B., 2017. Analysis on the development and current situation of rainbow trout (Oncorhynchus mykiss) farming in Mexico. Reviews in Aquaculture, 9(2), pp.194–202. https://doi.org/10.1111/raq.12133

Planque, B., Loots, C., Petitgas, P., Lindstrøm, U.L.F. and Vaz, S., 2011. Understanding what controls the spatial distribution of fish populations using a multi?model approach. Fisheries Oceanography, 20(1), pp.1–17. https://doi.org/10.1111/j.1365-2419.2010.00546.x

Prakash, S., 2021. Impact of climate change on aquatic ecosystem and its biodiversity: an overview. International Journal of Biological Innovations, 3(2). https://doi.org/10.46505/IJBI.2021.3210

Racine, E. and Bracken?Roche, D., 2019. Enriching the concept of vulnerability in research ethics: An integrative and functional account. Bioethics, 33(1), pp.19–34. https://doi.org/10.1111/bioe.12471

Rajitha, K., Mukherjee, C.K. and Chandran, R.V., 2007. Applications of remote sensing and GIS for sustainable management of shrimp culture in India. Aquacultural Engineering, 36(1), pp.1–17. https://doi.org/10.1016/j.aquaeng.2006.05.003

Ravallion, M. and Lokshin, M., 2006. On the Consistency of Poverty Lines. In: A. de Janvry and R. Kanbur, eds. de Janvry, A. and R. Kanbur (eds.). Poverty, Inequality and Development: Essays in Honor of Erik Thorbecke. [online] Boston, MA: Springer US. pp.15–39. https://doi.org/10.1007/0-387-29748-0_3

Reid, G.K., Filgueira, R. and Garber, A., 2015. Revisiting temperature effects on aquaculture in light of pending climate change. In: J. Wade, T. Jackson, K. Brewer (eds.). Aquaculture Canada 2014 Proceedings of Contributed Papers. [online] St. Andrews, New Brunswick. pp.85–92. Available at: https://aquacultureassociation.ca/wp-content/uploads/2017/01/AC14-Proceedings-Bulletin-2015-1.pdf#page=85

Reta Mendiola, J.L. and Asiain Hoyos, A., 2010. Ordenamiento Acuícola del Estado de Veracruz. México: COLPOS-VER/SAGARPA/CONAPESCA. p.26.

Riahi, K., Rao, S., Krey, V., Cho, C., Chirkov, V., Fischer, G., Kindermann, G., Nakicenovic, N. and Rafaj, P., 2011. RCP 8.5—A scenario of comparatively high greenhouse gas emissions. Climatic Change, 109(1), p.33. https://doi.org/10.1007/s10584-011-0149-y

Richter, A. and Kolmes, S.A., 2005. Maximum temperature limits for Chinook, coho, and chum salmon, and steelhead trout in the Pacific Northwest. Reviews in Fisheries Science, 13(1), pp.23–49. https://doi.org/10.1080/10641260590885861

Rosales Estrada, E.M., Santana Juárez, M.V., Holguín García, F.J. and Olmos Cruz, A., 2013. Application of Geographic Information Systems in the Agricultural Sector of the State of Mexico. Case production of rainbow trout. [online] 10th CONTECSI - International Conference on Information Systems and Technology Management. Brazil. https://doi.org/10.5748/9788599693094-10CONTECSI/PS-326

Salazar Arzate, M. del C., Zizumbo Villareal, L. and Garduño, M. eds., 2010. Estudio de los recursos productivos, humanos y ambientales de la cadena productiva de la “trucha arcoíris”, elementos susceptibles de aprovechamiento para el agroturismo, como alternativa para favorecer el desarrollo local del Municipio de Amanalco de Becerra, Estado de México, México. 116TH EAAE SEMINAR Spatial Dynamics in Agri-food Systems: Implications for Sustainability and Consumer Welfare. Parma Italia. pp.2–8. https://doi.org/10.22004/ag.econ.95340

Sándor, Z.J., Révész, N., Varga, D., Tóth, F., Ardó, L. and Gyalog, G., 2021. Nutritional and economic benefits of using DDGS (distiller’ dried grains soluble) as feed ingredient in common carp semi-intensive pond culture. Aquaculture Reports, 21, p.100819. https://doi.org/10.1016/j.aqrep.2021.100819

Santos, G.V., Cordeiro, L.G., Rojo, C.A. and Leismann, E.L., 2021. A new look at the anthropogenic global warming consensus: an econometric forecast based on the ARIMA model of paleoclimate series. arXiv. https://doi.org/10.48550/arXiv.2109.10419

Schneider, S., 2009. The worst-case scenario. Nature, 458(7242), pp.1104–1105. https://doi.org/10.1038/4581104a

Segner, H., Reiser, S., Ruane, N., Rösch, R., Steinhagen, D. and Vehanen, T., 2019. Welfare of fishes in aquaculture. FAO Fisheries and Aquaculture Circular. [online] Budapest: Food and Agriculture Organization of the United Nations-FAO. p.8. Available at: https://jukuri.luke.fi/bitstream/handle/10024/544503/welfare_published.pdf?sequence=1

Sepúlveda Hernández, S., Gómez Demetrio, W., García Mondragón, D., Moctezuma Pérez, S. and Vizcarra Bordi, I., 2021. Una aproximación a la innovación inclusiva entre productores de trucha arcoíris (Oncorhynchus mykiss) del Estado de México. Iberoforum. Revista de Ciencias Sociales de la Universidad Iberoamericana, 1(2), pp.1–31. https://doi.org/10.48102/if.2021.v1.n2.170

Sepúlveda Hernández, S., Vizcarra Bordi, I., Moctezuma Pérez, S., García Mondragón, D. and Gómez Demetrio, W., 2023. Gender inequalities in inclusive innovation of rainbow trout production, Estado de México. Agricultura, Sociedad y Desarrollo, 19(4), pp.493–512. https://doi.org/10.22231/asyd.v19i4.1508

Shunmugapriya, K., Panneerselvam, B., Muniraj, K., Ravichandran, N., Prasath, P., Thomas, M. and Duraisamy, K., 2021. Integration of multi criteria decision analysis and GIS for evaluating the site suitability for aquaculture in southern coastal region, India. Marine Pollution Bulletin, 172, p.112907. https://doi.org/10.1016/j.marpolbul.2021.112907

Slater, J.A. and Malys, S., 1998. WGS 84 — Past, Present and Future. In: F.K. Brunner, ed. Advances in Positioning and Reference Frames. Berlin, Heidelberg: Springer Berlin Heidelberg. pp.1–7.

Sosa-Villalobos, C., Castañeda-Chávez, M. del R., Amaro-Espejo, I.A., Galaviz-Villa, I. and Lango-Reynoso, F., 2016. Diagnosis of the current state of aquaculture production systems with regard to the environment in Mexico. Latin American Journal of Aquatic Research, 44(2), pp.193–201. https://doi.org/10.3856/vol44-issue2-fulltext-1

Soto Esparza, M. and Geisser Kientz, D., 2011. Geografía. In: La Biodiversidad en Veracruz. Estudio de Estado, Gobierno del Estado de Veracruz. México. pp.31–34.

Sumpter, J.P., 1992. Control of growth of rainbow trout (Oncorhynchus mykiss). The Rainbow Trout, 100(1), pp.299–320. https://doi.org/10.1016/0044-8486(92)90386-Y

Szyper, J.P., 2002. Water temperature regimes in aquaculture systems in East Hawaii. Journal of Hawaiian and Pacific Agriculture, 12(1), pp.15–27. https://hilo.hawaii.edu/panr/writing.php?id=181

UNIATMOS, 2024. Actualización de los escenarios de cambio climático para estudios de impactos, vulnerabilidad y adaptación. [online] Atlas Climático Digital de México. Available at: https://atlasclimatico.unam.mx/cmip5/visualizador [Accessed 20 March 2024].

Van der Linden, S., 2021. The Gateway Belief Model (GBM): A review and research agenda for communicating the scientific consensus on climate change. Current Opinion in Psychology, 42, pp.7–12. https://doi.org/10.1016/j.copsyc.2021.01.005

Vázquez, J.L., Brunet, M. and Jones, P.D., 2008. Cambios observados en los extremos climáticos de temperatura y precipitación en el estado de Veracruz, México a partir de datos diarios. In: J. Sigró Rodríguez, M. Brunet India and E. Aguilar Anfrons, eds. Cambio Climático Regional y sus Impactos, A;6. [online] IV Congreso AEC. Tarragona, España: Asociación Española de Climatología. pp.447–456. Available at: http://hdl.handle.net/20.500.11765/8657

Voldoire, A., Sanchez-Gomez, E., Salas y Mélia, D., Decharme, B., Cassou, C., Sénési, S., Valcke, S., Beau, I., Alias, A., Chevallier, M., Déqué, M., Deshayes, J., Douville, H., Fernandez, E., Madec, G., Maisonnave, E., Moine, M.-P., Planton, S., Saint-Martin, D., Szopa, S., Tyteca, S., Alkama, R., Belamari, S., Braun, A., Coquart, L. and Chauvin, F., 2013. The CNRM-CM5.1 global climate model: description and basic evaluation. Climate Dynamics, 40(9), pp.2091–2121. https://doi.org/10.1007/s00382-011-1259-y

Xia, J., Ma, Y., Fu, C., Fu, S. and Cooke, S.J., 2017. Effects of temperature acclimation on the critical thermal limits and swimming performance of Brachymystax lenok tsinlingensis: a threatened fish in Qinling Mountain region of China. Ecological Research, 32, pp.61–70. https://doi.org/10.1007/s11284-016-1418-z

Zetina Córdoba, P., Reta Mendiola, J.L., Olguín Palacios, C., Acosta Barradas, R. and Espinosa Sánchez, G., 2006. El cultivo de tilapia (Oreochromis spp) en la rentabilidad de seis agroecosistemas en el estado de Veracruz. Técnica Pecuaria en México, 44(2), pp.169–179. https://doi.org/10.1007/s11284-016-1418-z

Zhou, L.-Y., Fu, S.-J., Fu, C., Ling, H. and Li, X.-M., 2019. Effects of acclimation temperature on the thermal tolerance, hypoxia tolerance and swimming performance of two endangered fish species in China. Journal of Comparative Physiology B, 189(2), pp.237–247. https://doi.org/10.1007/s00360-018-01201-9




URN: http://www.revista.ccba.uady.mx/urn:ISSN:1870-0462-tsaes.v27i3.55880

DOI: http://dx.doi.org/10.56369/tsaes.5588



Copyright (c) 2024 JUAN ACOSTA-JIMENO, JUAN L. RETA-MENDIOLA, DIEGO E. PLATAS-ROSADO, ALBERTO ASIAIN-HOYOS

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.