FUNGI ASSOCIATED WITH THE RHIZOSPHERE OF Rhizophora mangle AND THEIR RELATIONSHIP WITH THE NATURAL ATTENUATION OF PETROLEUM-CONTAMINATED SOILS

Oswaldo Guzmán-López, Alan Couttolenc, María del Carmen Cuevas-Díaz, Alejandro Salinas-Castro, Guillermo Mendoza, César Espinoza

Abstract


Background. Mangrove ecosystems in oil-producing areas in the south of Veracruz, Mexico are permanently threatened by oil spill contamination. In this context, Rhizophora mangle and the microbiota associated with its rhizosphere have adapted over time to processes of bioremediation and natural attenuation of petroleum hydrocarbons. Objective. To evaluate the hydrocarbonoclastic potential of filamentous fungi isolated from the rhizosphere of R. mangle present in a hydrocarbon-contaminated site in Veracruz. Methodology. A rhizosphere sample was characterized physicochemically and total petroleum hydrocarbons were quantified. Fungal strains with hydrocarbonoclastic capacity were isolated in Noble agar medium, salts, and paper impregnated with Maya crude oil. The strains were identified by cell morphology and rDNA ITS region sequencing, and the sequences were used to construct a phylogenetic tree using the maximum likelihood method. A liquid culture was developed in a mineral medium added with petroleum for 30 days and the saturated, polar, and aromatic fractions were quantified to determine the percentage of biodegradation. Results. Six strains of hydrocarbonoclastic fungi were isolated and identified in R. mangle rhizosphere contaminated with 109 916.5 mg kg-1 of TPHs. Of these strains, Aspergillus niger and A. flavus showed the highest hydrocarbon biodegradation with 30.5 and 26.1%, respectively. The highest biodegradation of the saturated fraction was observed with A. niger, A. flavus, and A. egyptiacus; Fusarium oxysporum and A. niger preferred the polar fraction, while A. niger and A. flavus assimilated more of the aromatic fraction.  Implications. These hydrocarbonoclastic strains may be potentially used in restoration strategies for hydrocarbon-contaminated mangroves. Conclusion. The microorganisms associated with contaminated mangroves are part of the natural attenuation of the studied site and may be useful for the treatment of sites affected by petroleum spills. Antecedentes. Los ecosistemas de manglar presentes en zonas petroleras del sur de Veracruz, México, se encuentran permanentemente amenazados por la contaminación por derrames de hidrocarburos. En este sentido, Rhizophora mangle y su microbiota asociada a la rizosfera se han adaptado a través del tiempo a procesos de biorremediación y atenuación natural de hidrocarburos del petróleo. Objetivo. Evaluar el potencial hidrocarbonoclasta de hongos filamentosos aislados de la rizosfera de R. mangle presentes en un sitio contaminado con hidrocarburos de Veracruz. Metodología: Se caracterizó fisicoquímicamente una muestra compuesta de rizosfera y se cuantificaron los hidrocarburos totales del petróleo. Se aislaron cepas fúngicas con capacidad hidrocarbonoclasta en medio agar noble, sales y con papel impregnado de petróleo crudo Maya. Las cepas fueron identificadas por morfología celular y por secuenciación de la región ITS del ADNr, se realizó un árbol filogenético con las secuencias por el método de máxima verosimilitud. Se realizó cultivo líquido en medio mineral adicionado con petróleo durante 30 días, se cuantificaron la fracción saturada, polar y de aromáticos determinando los porcentajes de biodegradación. Resultados: Se aislaron e identificaron seis cepas de hongos hidrocarbonoclastas a partir de rizosfera de R. mangle contaminado con 109 916.5 mg kg-1 de HTP, de las cuales Aspergillus niger y A. flavus fueron los que presentaron una mayor biodegradación de hidrocarburos con un 30.5 y 26.1%, respectivamente. La mayor biodegradación de la fracción saturada fue con A. niger, A. flavus y A. egyptiacus; Fusarium oxysporum y A. niger prefirieron mejor la fracción polar; mientras que A. niger y A. flavus asimilaron más la fracción de aromáticos.  Implicaciones Estas cepas hidrocarbonoclastas pueden tener un potencial para utilizarse en estrategias de restauración de manglares contaminados con hidrocarburos. Conclusión Los microorganismos asociados al manglar contaminado forman parte de la atenuación natural del sitio estudiado y podrían ser útiles en el tratamiento de sitios impactados por derrames de petróleo.

Keywords


Contamination; Hydrocarbonoclasts; Mangrove; Crude oil

Full Text:

PDF

References


Al-Hawash, AB., Dragh, MA., Li, S., Alhujaily, A., Abbood, HA., Zhang, X. and Ma, F., 2018. Principles of microbial degradation of petroleum hydrocarbons in the environment. Egyptian Journal of Aquatic Research, 44(2), pp. 71-76. https://doi.org/10.1016/j.ejar.2018.06.001

April, T., Foght, J. and Currah, R., 2000. Hydrocarbon-degrading filamentous fungi isolated from flare pit soils in northern and western Canada. Canadian Journal of Microbiology, 46, pp. 38-49. https://doi.org/10.1139/w99-117

Arce-Ortega, J.M., Rojas-Avelizapa, N.G. and Rodríguez-Vázquez, R., 2004. Identification of recalcitrant hydrocarbons present in a drilling waste-polluted soil. Journal of Environmental Science and health. Part A, 39(6), pp. 1535-1545. https://doi.org/10.1081/ESE-120037852

Barnett, H.L. and Hunter, B.B., 1998. Illustrated genera of imper¬fect fungi. 4th Edition, St. Paul: American Phytopathological Society Press, p. 218.

Benguenab, A. and Chibani, A., 2021. Biodegradation of petroleum hydrocarbons by filamentous fungi (Aspergillus ustus and Purpureocillium lilacinum) isolated from used engine oil contaminated soil. Acta Ecologica Sinica, 41(5), pp. 416-423. https://doi.org/10.1016/j.chnaes.2020.10.008

Chaîneau, C., Morel, J. and Oudot, J., 1995. Microbial degradation in soil microcosms of fuel oil hydrocarbons from drilling cuttings. Environmental Science and Technology, 29, pp. 1615-1621. https://doi.org/10.1021/es00006a027

Chaîneau, C., Morel, J., Dupont, J., Bury, E. and Oudot, J., 1999. Comparison of the fuel oil biodegradation potential of hydrocarbon-assimilating microorganisms isolated from a temperate agricultural soil. Science of the Total Environment 227(2-3), pp. 237-247. https://10.1016/s0048-9697(99)00033-9

Chaurasia, P.K., Bharati, S.L., Mani A., 2019. Chapter 20 - significances of fungi in bioremediation of contaminated soil. In: J.S. Singh, D.P. Singh, ed. New and future developments in microbial biotechnology and bioengineering, Elsevier, pp. 281-294. https://doi.org/10.1016/B978-0-444-64191-5.00020-1

Colombo, J.C., Cabello, M. and Arambarri, A.M., 1996. Biodegradation of aliphatic and aromatics hydrocarbons by natural soil microflora and pure cultures of imperfect and lignolitic fungi. Environmental Pollution, 94(3), pp. 355-362. https://doi.org/10.1016/S0269-7491(96)00044-9

Cuevas-Díaz, M.C., Hernández-Romero, A.H., Vázquez-Luna, D., Lara-Rodríguez, D-A., Guzmán-López, O., González-Arvizu, J.E., Ontiveros-José, J.I. 2020. Effect of anthropogenic activities on mangrove coverage in the lower Coatzacoalcos river basin. Ecosistemas, 29(3), pp. 1954. https://doi.org/10.7818/ECOS.1954

D'Annibale, A., Rosetto, F., Leonardi, V., Federici, F. and Petruccioli, M. 2006. Role of autochthonous ?lamentous fungi in bioremediation of a soil historically contaminated with aromatic hydrocarbons. Applied and Environmental Microbiology, 72(1), pp. 28–36. https://doi.org/10.1128/AEM.72.1.28-36.2006

Dragun, J. and Barkach, J. H., 2000. Overview: Fate of petroleum in soil systems. In: P. Kostecki and M. Behbehani, ed. Assessment and remediation of oil contaminated soils. Arab School on Science and Technology. State of Kuwait. Amherst, MA: Amherst Scientific Publications. pp. 18-22.

Fernández, L., Rojas, N., Roldán, T., Ramírez, M., Zegarra, H., Hernández, R., Reyes, R., Flores, D. y Arce, J., 2006. Manual de análisis de suelos aplicados a la remediación de sitios contaminados. México, D.F. Instituto Mexicano del Petróleo; Secretaría de Medio Ambiente y Recursos Naturales; Instituto Nacional de Ecología.

Geiser, D.M., Klich, M.A., Frisvad, J.C., Peterson, S.W., Arga, J. and Samson, R.A., 2007. The current status of species recognition and identification in Aspergillus. Studies in Mycology, 59, pp. 1-10. https://doi.org/10.3114/sim.2007.59.01

George-Okafor, U., Taise, F. and Muotoe-Okafor, F., 2009. Hydrocarbon degradation potentials of indigenous fungal isolates from petroleum contaminated soils. Journal of Physical and Natural Sciences, 3(1), pp. 1-6.

Hashem, A.R., 2007. Bioremediation of petroleum contaminated soils in the Arabian Gulf region: a review. Journal of King Abdulaziz University: Science, 19, pp. 81-91. URL: https://www.kau.edu.sa/Files/320/Researches/52387_22694.pdf

Hemida, S.K., Bagy, M.K. and Khallil, A.M., 1993. Utilization of hydrocarbons by fungi. Cryptogamie Mycologie, 14(3), pp. 207-213. URL: https://www.biodiversitylibrary.org/partpdf/354384

Koshlaf, E. and Ball, A.S., 2017. Soil bioremediation approaches for petroleum hydrocarbon polluted environments. AIMS Microbiology, 3(1), pp. 25-49. https://doi.org/10.3934/microbiol.2017.1.25

Kumar, B.L. and Gopal, D.V., 2015. Effective role of indigenous microorganisms for sustainable environment. 3 Biotech, 5(6), pp. 867-876. https://doi.org/10.1007/s13205-015-0293-6

Mahmoudi, B., Mafi-Gholami, D. and Ng, E. 2022. Evaluation of mangrove rehabilitation and afforestation in the southern coasts of Iran. Estuarine, Coastal and Shelf Science, 277, p. 108086. https://doi.org/10.1016/j.ecss.2022.108086

Martín, C., González, A. y Blanco, M.J. 2004. Tratamiento biológico de suelos contaminados: contaminación con hidrocarburos. Aplicaciones de hongos en el tratamiento de biorrecuperación. Revista Iberoamericana de Micología, 21, pp. 103-120. http://www.reviberoammicol.com/2004-21/103120.pdf

Mohsenzadeh, F., Nasseri, S., Mesdaghinia, A., Nabizadeh, R., Zafari, D., Khodakaramian, G. and Chehregani, A., 2010. Phytoremediation of petroleum-polluted soils: Application of Polygonum aviculare and its root-associated (penetrated) fungal strains for bioremediation of petroleum-polluted soils. Ecotoxicology and Environmental Safety, 73(4), pp. 613-619. https://doi.org/10.1016/j.ecoenv.2009.08.020

Mollea, C., Bosco, F. and Ruggeri, B., 2005. Fungal biodegradation of naphthalene: microcosms studies. Chemosphere, 60(5), pp. 636-643. https://doi.org/10.1016/j.chemosphere.2005.01.034

Naranjo, L., Urbina, H., De Sisto, A. and León, V., 2007. Isolation of autochthonous non-white rot fungi with potential for enzymatic upgrading of Venezuelan extra-heavy crude oil. Biocatalysis and Biotransformation, 25(2-4), pp. 341-349. https://doi.org/10.1080/10242420701379908

OAS, (2014). Organization of American States. Available: www.oas.org. Accessed on: 23 Feb 2024

Olguín, E., Hernández, M.E. y Sánchez-Galván, G., 2007. Contaminación de manglares por hidrocarburos y estrategias de biorremediación, fitorremediación y restauración. Revista Internacional de Contaminación Ambiental, 23(3), pp. 139-154. https://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S0188-49992007000300004

Oudot, J., Haloui, S. and Roquebert M., 1993. Biodegradation potential of hydrocarbon-degrading fungi in tropical soil. Soil Biology and Biochemistry, 25, 1167-1173. https://doi.org/10.1016/0038-0717(93)90211-S

Paetz, A. and Wilke, B.-M. 2005, Soil sampling and storage, soil biology. In: R. Margesin and F. Schinner, eds. Manual for soil analysis - Monitoring and assessing soil bioremediation, Berlin Heidelberg: Springer-Verlag, pp. 1-45. https://doi.org/10.1007/3-540-28904-6_1

Pernía, B., Demey, J., Inojosa Y. and Naranjo L., 2012. Biodiversidad y potencial hidrocarbonoclástico de hongos aislados de crudo y sus derivados: Un meta-análisis. Revista Latinoamericana de Biotecnología Ambiental y Algal, 3(1), pp. 1-39. URL: http://www.solabiaa.org/ojs3/index.php/RELBAA/article/view/32

Rivera-Cruz, M., Ferrera-Cerrato, R., Sánchez-García, P., Volke-Haller, V., Fernández-Linares, L. and Rodríguez-Vázquez, R., 2004. Decontamination of soils polluted with crude petroleum using indigenous microorganisms and aleman grass [Echinochloa polystachya (h.b.k.) hitchc.]. Agrociencia, 38(1), pp. 1-12. https://www.agrociencia-colpos.org/index.php/agrociencia/article/view/294/294

Schwab, A.P., Su, J., Wetzel, S., Rekarek, S. and Banks, M. K., 1999. Extraction of petroleum hydrocarbons from soil by mechanical skaking. Environmental Science & Technology, 33(11), pp. 1940-1945. https://doi.org/10.1021/es9809758

Rodríguez-Zúñiga, M.T., González-Zamorano, P., Nava-Sánchez, E., López-Portillo, J., Bejarano, M., Cruz-López, M.I., de la Cruz-Agüero, G. and Ortega-Rubio, A. 2018. Marco de referencia para la integración y análisis de los manglares de México. En: Rodríguez Zúñiga, M.T., Villeda Chávez, E., Vázquez-Lule, A.D., Bejarano, M., Cruz López, M.I., Olguín, M. Villela Gaytán S.A. and Flores R. eds. Métodos para la caracterización de los manglares mexicanos: un enfoque espacial multiescala. Ciudad de México: Comisión Nacional para el Conocimiento y Uso de la Biodiversidad (CONABIO). pp. 13-31. http://www.pronatura-sur.org/web/COP24materials/Manglares%20y%20Cambio%20Climatico/Caracterizacion_Manglares.pdf

Sterner, R.W. and Elser, J.J., 2002. Ecological stoichiometry: The biology of elements from molecules to the biosphere. Princeton, NJ: Princeton University Press, pp. 464.

US EPA 3500B. 1996. Organic extraction and sample preparation. SW 846 Test methods for evaluating solid waste, physical/chemical methods. https://www.epa.gov/hw-sw846/sw-846-test-method-3500c-organic-extraction-and-sample-preparation

US EPA 3540C. 1996. Soxhlet extraction organics. SW-846 Test methods for evaluating solid waste, physical/chemical methods. https://www.epa.gov/hw-sw846/sw-846-test-method-3540c-soxhlet-extraction

Van Hamme, J., Singh, A. and Ward, O., 2003. Recent advances in petroleum microbiology. Microbiology and Molecular Biology Reviews, 67(4), pp. 503-549. https://doi.org/10.1128/mmbr.67.4.503-549.2003

Vidali, M., 2001. Bioremediation. An overview. Pure and Applied Chemestry, 73(7), pp. 1163-1172. https://doi.org/10.1351/pac200173071163

Yateem, A., Balba, M.T., Al-Awadhi, N. and El-Nawawy, A.S., 1998. White rot fungi and their role in remediating oil-contaminated soil. Environment International, 24, pp.181-187. https://doi.org/10.1016/S0160-4120(97)00134-7

Yu, H., Chronis, D., Lu, S. and Wang, X., 2011. Chorismate mutase: an alternatively spliced parasitism gene and a diagnostic marker for three important Globodera nematode species. European Journal of Plant Pathology, 129, pp. 89–102. https://doi.org/10.1007/s10658-010-9695-9

Yang, Z., Shi, Y., Wang, J., Wang, L., Li, X. and Zhang, D. 2021. Unique functional responses of fungal communities to various environments in the mangroves of the Maowei Sea in Guangxi, China. Marine Pollution Bulletin, 173, 113091. https://doi.org/10.1016/j.marpolbul.2021.113091




URN: http://www.revista.ccba.uady.mx/urn:ISSN:1870-0462-tsaes.v27i2.55166

DOI: http://dx.doi.org/10.56369/tsaes.5516



Copyright (c) 2024 César Espinoza, Oswaldo Guzmán-López, Alan Couttolenc, María del Carmen Cuevas-Díaz, Alejandro Salinas-Castro, Guillermo Mendoza

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.