SENTINEL-2, TOOL IN AGRI-FOOD SAFETY AND PRECISION AGRICULTURE

Aaron David Lugo-Palacio, Raul Eduardo Lugo-Palacios, Jose Luis García-Hernández, David Antonio Zuñiga-Garcia, Edgar Omar Rueda Puente

Abstract


Background. Food production as the world population increases is an issue of global importance, resulting in uncertainty around agri-food security (AS). It is essential to apply new technology that monitors and makes crop management more efficient to achieve sustainable development (SD). One technology responsible for improving conventional farmers' practices is precision agriculture (PA) using tools such as big data analytics, artificial intelligence and geospatial analysis. In this sense, the monitoring of markers through satellite images requires knowledge for adequate interpretations. Some satellites have multispectral images, monitoring with these has demonstrated high precision in predicting crop yields. There are several satellites, Landsat 8 (L8) and Sentinel-2 (S2) are the most advanced and open access. Objective. To present the spectrophotometric fundamentals and current state of remote sensing with S2 multispectral images in relation to problems facing agriculture. It is concluded that remote sensing is a tool that contributes to the proper management of agricultural production, showing high reliability. Methodology. This review was carried out in accordance with the PRISMA statement (Preferred Reporting Items for Systematic reviews and Meta-Analyses), a systematic analysis of literature in the databases was carried out. MDPI, Springer Link, Science Direct, Taylor and Francis and Google Scholar were consulted. The key words were “Sentinel-2, R2, Salinity, Pest, Nitrogen, Drought”. Zotero (www.zotero.org) was used as a free access bibliography manager; articles that were not related to the research objectives were excluded. Results. Articles related to the objective of this review were identified in the databases; the study was structured based on the needs of precision agriculture (PA). The importance of adequately managing the water demand of crops, salinity stress, pest detection and the movement of nitrogen (N) in the soil-plant-atmosphere interaction. Implications. Remote perception of phenomena at the field level represents an area for improvement in crop management. Increasing resource efficiency is crucial to achieving agri-food security (AS) and thus part of the sustainable development goals (SDGs). Conclusion. The S2 has multispectral images that, when processed, allow obtaining information about the crop, i.e. monitoring stress, humidity in plants and optimization of plant nutrition. With PA, decisions are made for crop management, costs are reduced by reducing losses due to crop stress, and resource efficiency increases.  

Keywords


Radiation; multispectral; forecast; satellite.

Full Text:

PDF

References


Ali, A.M., Darvishzadeh, R., Skidmore, A., Heurich, M., Paganini, M., Heiden, U. and Mücher, S., 2020. Evaluating Prediction Models for Mapping Canopy Chlorophyll Content Across Biomes. Remote Sensing, 12(11), pp.1–22. https://doi.org/10.3390/rs12111788

Amankulova, K., Farmonov, N., Mukhtorov, U. and Mucsi, L., 2023. Sunflower crop yield prediction by advanced statistical modeling using satellite-derived vegetation indices and crop phenology. Geocarto International, 38(1), pp.1–20. https://doi.org/10.1080/10106049.2023.2197509

Bannari, A., El-Battay, A., Bannari, R. and Rhinane, H., 2018. Sentinel-MSI VNIR and SWIR Bands Sensitivity Analysis for Soil Salinity Discrimination in an Arid Landscape. Remote Sensing, 10(6), pp.1–20. https://doi.org/10.3390/rs10060855

Battista, P., Bellini, E., Chiesi, M., Costafreda-Aumedes, S., Fibbi, L., Leolini, L., Moriondo, M., Rapi, B., Rossi, R., Sabatini, F. and Maselli, F., 2023. Estimating the effect of water shortage on olive trees by the combination of meteorological and Sentinel-2 data. European Journal of Remote Sensing, 56(1), pp.1–10. https://doi.org/10.1080/22797254.2023.2194553

Bellvert, J., Pelechá, A., Pamies-Sans, M., Virgili, J., Torres, M. and Casadesús, J., 2023. Assimilation of Sentinel-2 Biophysical Variables into a Digital Twin for the Automated Irrigation Scheduling of a Vineyard. Water, 15(14), pp.1–23. https://doi.org/10.3390/w15142506

Berger, K., Verrelst, J., Féret, J.-B., Wang, Z., Wocher, M., Strathmann, M., Danner, M., Mauser, W. and Hank, T., 2020. Crop nitrogen monitoring: Recent progress and principal developments in the context of imaging spectroscopy missions. Remote Sensing of Environment, 242, pp.1–44. https://doi.org/10.1016/j.rse.2020.111758

Blonda, P., Tarantino, C., Scortichini, M., Maggi, S., Tarantino, M. and Adamo, M., 2023. Satellite monitoring of bio-fertilizer restoration in olive groves affected by Xylella fastidiosa subsp. pauca. Scientific Reports, 13(1), pp.1–20. https://doi.org/10.1038/s41598-023-32170-x

Bossung, C., Schlerf, M. and Machwitz, M., 2022. Estimation of canopy nitrogen content in winter wheat from Sentinel-2 images for operational agricultural monitoring. Precision Agriculture, 23(6), pp.2229–2252. https://doi.org/10.1007/s11119-022-09918-y

Buchaillot, M.L., Cairns, J., Hamadziripi, E., Wilson, K., Hughes, D., Chelal, J., McCloskey, P., Kehs, A., Clinton, N., Araus, J.L. and Kefauver, S.C., 2022. Regional Monitoring of Fall Armyworm (FAW) Using Early Warning Systems. Remote Sensing, 14(19), pp.1–19. https://doi.org/10.3390/rs14195003

Carter, G.A., 1991. Primary and Secondary Effects of Water Content on the Spectral Reflectance of Leaves. American Journal of Botany, 78(7), pp.916–924. https://doi.org/10.1002/j.1537-2197.1991.tb14495.x

Casella, A., Orden, L., Pezzola, N.A., Bellaccomo, C., Winschel, C.I., Caballero, G.R., Delegido, J., Gracia, L.M.N. and Verrelst, J., 2022. Analysis of Biophysical Variables in an Onion Crop (Allium cepa L.) with Nitrogen Fertilization by Sentinel-2 Observations. Agronomy, 12(8), pp.1–17. https://doi.org/10.3390/agronomy12081884

Castelli, M., Peratoner, G., Pasolli, L., Molisse, G., Dovas, A., Sicher, G., Crespi, A., Rossi, M., Alasawedah, M.H., Soini, E., Monsorno, R. and Notarnicola, C., 2023. Insuring Alpine Grasslands against Drought-Related Yield Losses Using Sentinel-2 Satellite Data. Remote Sensing, 15(14), pp.1–27. https://doi.org/10.3390/rs15143542

Cisneros, A., Fiorio, P., Menezes, P., Pasqualotto, N., Van Wittenberghe, S., Bayma, G. and Furlan Nogueira, S., 2020. Mapping Productivity and Essential Biophysical Parameters of Cultivated Tropical Grasslands from Sentinel-2 Imagery. Agronomy, 10(5), pp.1–23. https://doi.org/10.3390/agronomy10050711

Crema, A., Boschetti, M., Nutini, F., Cillis, D. and Casa, R., 2020. Influence of Soil Properties on Maize and Wheat Nitrogen Status Assessment from Sentinel-2 Data. Remote Sensing, 12(14), pp.1–23. https://doi.org/10.3390/rs12142175

Cui, B., Zhao, Q., Huang, W., Song, X., Ye, H. and Zhou, X., 2019. Leaf chlorophyll content retrieval of wheat by simulated RapidEye, Sentinel-2 and EnMAP data. Journal of Integrative Agriculture, 18(6), pp.1230–1245. https://doi.org/10.1016/S2095-3119(18)62093-3

Dehghan-Shoar, M.H., Pullanagari, R.R., Kereszturi, G., Orsi, A.A., Yule, I.J. and Hanly, J., 2023. A Unified Physically Based Method for Monitoring Grassland Nitrogen Concentration with Landsat 7, Landsat 8, and Sentinel-2 Satellite Data. Remote Sensing, 15(10), pp.1–21. https://doi.org/10.3390/rs15102491

Dhiman, G., Bhattacharya, J. and Roy, S., 2023. Soil textures and nutrients estimation using remote sensing data in north india - Punjab region. Procedia Computer Science, 218, pp.2041–2048. https://doi.org/10.1016/j.procs.2023.01.180

Eisberg, R.M. and Resnick, R., 1985. Quantum Physics of Atoms, Molecules, Solids, Nuclei, and Particles. Wiley.

Fernández-Habas, J., García Moreno, A.M., Hidalgo-Fernández, M.T., Leal-Murillo, J.R., Abellanas Oar, B., Gómez-Giráldez, P.J., González-Dugo, M.P. and Fernández-Rebollo, P., 2021. Investigating the potential of Sentinel-2 configuration to predict the quality of Mediterranean permanent grasslands in open woodlands. Science of The Total Environment, 791, pp.1–19. https://doi.org/10.1016/j.scitotenv.2021.148101

Filintas, A., Nteskou, A., Kourgialas, N., Gougoulias, N. and Hatzichristou, E., 2022. A Comparison between Variable Deficit Irrigation and Farmers’ Irrigation Practices under Three Fertilization Levels in Cotton Yield (Gossypium hirsutum L.) Using Precision Agriculture, Remote Sensing, Soil Analyses, and Crop Growth Modeling. Water, 14(17), pp.1–34. https://doi.org/10.3390/w14172654

French, A.N., Sanchez, C.A., Wirth, T., Scott, A., Shields, J.W., Bautista, E., Saber, M.N., Wisniewski, E. and Gohardoust, M.R., 2023. Remote sensing of evapotranspiration for irrigated crops at Yuma, Arizona, USA. Agricultural Water Management, 290, pp.1–18. https://doi.org/10.1016/j.agwat.2023.108582

Gao, J., Liu, J., Liang, T., Hou, M., Ge, J., Feng, Q., Wu, C. and Li, W., 2020. Mapping the Forage Nitrogen-Phosphorus Ratio Based on Sentinel-2 MSI Data and a Random Forest Algorithm in an Alpine Grassland Ecosystem of the Tibetan Plateau. Remote Sensing, 12(18), pp.1–19. https://doi.org/10.3390/rs12182929

Gitelson, A.A., Merzlyak, M.N. and Chivkunova, O.B., 2001. Optical properties and nondestructive estimation of anthocyanin content in plant leaves. Photochemistry and Photobiology, 74(1), pp.38–45. https://doi.org/10.1562/0031-8655(2001)074<0038:opaneo>2.0.co;2

Gogoi, J., Newlands, N.K., Mehrabi, Z., Coops, N.C. and Ramankutty, N., 2023. Assessing the Performance of Satellite-Based Models for Crop Yield Estimation in the Canadian Prairies. Canadian Journal of Remote Sensing, 49(1), pp.1–29. https://doi.org/10.1080/07038992.2023.2252926

Gómez-Flores, J.L., Ramos-Rodríguez, M., González-Jiménez, A., Farzamian, M., Herencia.Galán, J.F., Salvatierra-Bellido, B., Cermeño-Sacristan, P. and Vanderlinden, K., 2022. Depth-Specific Soil Electrical Conductivity and NDVI Elucidate Salinity Effects on Crop Development in Reclaimed Marsh Soils. Remote Sensing, 14(14), pp.1–20. https://doi.org/10.3390/rs14143389

Gopalakrishnan, T. and Kumar, L., 2020. Modeling and Mapping of Soil Salinity and its Impact on Paddy Lands in Jaffna Peninsula, Sri Lanka. Sustainability, 12(20), pp.1–15. https://doi.org/10.3390/su12208317

Hassani, K., Gholizadeh, H., Taghvaeian, S., Natalie, V., Carpenter, J. and Jacob, J., 2023. Assessing the impact of spatial resolution of UAS-based remote sensing and spectral resolution of proximal sensing on crop nitrogen retrieval accuracy. International Journal of Remote Sensing, 44(14), pp.4441–4464. https://doi.org/10.1080/01431161.2023.2237162

Iatrou, M., Karydas, C., Iatrou, G., Pitsiorlas, I., Aschonitis, V., Raptis, I., Mpetas, S., Kravvas, K. and Mourelatos, S., 2021. Topdressing Nitrogen Demand Prediction in Rice Crop Using Machine Learning Systems. Agriculture, 11(4), pp.1–17. https://doi.org/10.3390/agriculture11040312

Kang, Y., Gao, F., Anderson, M., Kustas, W., Nieto, H., Knipper, K., Yang, Y., White, W., Alfieri, J., Torres-Rua, A., Alsina, M.M. and Karnieli, A., 2022. Evaluation of satellite Leaf Area Index in California vineyards for improving water use estimation. Irrigation Science, 40(4), pp.531–551. https://doi.org/10.1007/s00271-022-00798-8

Kganyago, M., Adjorlolo, C., Sibanda, M., Mhangara, P., Laneve, G. and Alexandridis, T., 2023a. Testing Sentinel-2 spectral configurations for estimating relevant crop biophysical and biochemical parameters for precision agriculture using tree-based and kernel-based algorithms. Geocarto International, 38(1), pp.1–25. https://doi.org/10.1080/10106049.2022.2146764

Kganyago, M., Ovakoglou, G., Mhangara, P., Adjorlolo, C., Alexandridis, T., Laneve, G. and Beltran, J.S., 2023b. Evaluating the contribution of Sentinel-2 view and illumination geometry to the accuracy of retrieving essential crop parameters. GIScience & Remote Sensing, 60(1), pp.1–20. https://doi.org/10.1080/15481603.2022.2163046

Li, Z., Zhang, F., Chen, L., Zhang, H., and Hsiang-Te-Kung, 2018. Research on the Estimation Model of Vegetation Water Content in Halophyte Leaves Based on the Newly Developed Vegetation Indices. Photogrammetric Engineering & Remote Sensing, 84(9), pp.538–548. https://doi.org/10.14358/PERS.84.9.537

Lin, Y., Zhu, Z., Guo, W., Sun, Y., Yang, X. and Kovalskyy, V., 2020. Continuous Monitoring of Cotton Stem Water Potential using Sentinel-2 Imagery. Remote Sensing, 12(7), pp.1–18. https://doi.org/10.3390/rs12071176

Loozen, Y., Karssenberg, D., de Jong, S.M., Wang, S., van Dijk, J., Wassen, M.J. and Rebel, K.T., 2019. Exploring the use of vegetation indices to sense canopy nitrogen to phosphorous ratio in grasses. International Journal of Applied Earth Observation and Geoinformation, 75, pp.1–14. https://doi.org/10.1016/j.jag.2018.08.012

Lugassi, R., Goldshleger, N. and Chudnovsky, A., 2017. Studying Vegetation Salinity: From the Field View to a Satellite-Based Perspective. Remote Sensing, 9(2), pp.1–16. https://doi.org/10.3390/rs9020122

Marino, S., 2023. Understanding the spatio-temporal behavior of crop yield, yield components and weed pressure using time series Sentinel-2-data in an organic farming system. European Journal of Agronomy, 145, pp.1–10. https://doi.org/10.1016/j.eja.2023.126785

Mashaba-Munghemezulu, Z., Chirima, G.J. and Munghemezulu, C., 2021. Modeling the Spatial Distribution of Soil Nitrogen Content at Smallholder Maize Farms Using Machine Learning Regression and Sentinel-2 Data. Sustainability, 13(21), pp.1–21. https://doi.org/10.3390/su132111591

Merzlyak, M.N., Solovchenko, A.E. and Gitelson, A.A., 2003. Reflectance spectral features and non-destructive estimation of chlorophyll, carotenoid and anthocyanin content in apple fruit. Postharvest Biology and Technology, 27(2), pp.197–211. https://doi.org/10.1016/S0925-5214(02)00066-2

Mezera, J., Lukas, V., Hornia?ek, I., Smutný, V. and Elbl, J., 2022. Comparison of Proximal and Remote Sensing for the Diagnosis of Crop Status in Site-Specific Crop Management. Sensors, 22(1), pp.1–23. https://doi.org/10.3390/s22010019

Miao, J., Zhen, J., Wang, J., Zhao, D., Jiang, X., Shen, Z., Gao, C. and Wu, G., 2022. Mapping Seasonal Leaf Nutrients of Mangrove with Sentinel-2 Images and XGBoost Method. Remote Sensing, 14(15), pp.1–23. https://doi.org/10.3390/rs14153679

Moussa, I., Walter, C., Michot, D., Adam Boukary, I., Nicolas, H., Pichelin, P. and Guéro, Y., 2020. Soil Salinity Assessment in Irrigated Paddy Fields of the Niger Valley Using a Four-Year Time Series of Sentinel-2 Satellite Images. Remote Sensing, 12(20), pp.1–17. https://doi.org/10.3390/rs12203399

Naimi, S., Ayoubi, S., Zeraatpisheh, M. and Dematte, J.A.M., 2021. Ground Observations and Environmental Covariates Integration for Mapping of Soil Salinity: A Machine Learning-Based Approach. Remote Sensing, 13(23), pp.1–21. https://doi.org/10.3390/rs13234825

Ollinger, S.V., 2011. Sources of variability in canopy reflectance and the convergent properties of plants. New Phytologist, 189(2), pp.375–394. https://doi.org/10.1111/j.1469-8137.2010.03536.x

Ollinger, S.V., Richardson, A.D., Martin, M.E., Hollinger, D.Y., Frolking, S.E., Reich, P.B., Plourde, L.C., Katul, G.G., Munger, J.W., Oren, R., Smith, M.-L., Paw U, K.T., Bolstad, P.V., Cook, B.D., Day, M.C., Martin, T.A., Monson, R.K. and Schmid, H.P., 2008. Canopy nitrogen, carbon assimilation, and albedo in temperate and boreal forests: Functional relations and potential climate feedbacks. Proceedings of the National Academy of Sciences, 105(49), pp.19336–19341. https://doi.org/10.1073/pnas.0810021105

Olsen, E.D., 1990. Métodos ópticos de análisis. Barcelona: Reverte.

Page, M.J., McKenzie, J.E., Bossuyt, P.M., Boutron, I., Hoffmann, T.C., Mulrow, C.D., Shamseer, L., Tetzlaff, J.M., Akl, E.A., Brennan, S.E., Chou, R., Glanville, J., Grimshaw, J.M., Hróbjartsson, A., Lalu, M.M., Li, T., Loder, E.W., Mayo-Wilson, E., McDonald, S., McGuinness, L.A., Stewart, L.A., Thomas, J., Tricco, A.C., Welch, V.A., Whiting, P., Moher, D., Yepes-Nuñez, J.J., Urrútia, G., Romero-García, M. and Alonso-Fernández, S., 2021. Declaración PRISMA 2020: una guía actualizada para la publicación de revisiones sistemáticas. Revista Española de Cardiología, 74(9), pp.790–799. https://doi.org/10.1016/j.recesp.2021.06.016

Pang, H., Zhang, A., Yin, S., Zhang, J., Dong, G., He, N., Qin, W. and Wei, D., 2022. Estimating Carbon, Nitrogen, and Phosphorus Contents of West–East Grassland Transect in Inner Mongolia Based on Sentinel-2 and Meteorological Data. Remote Sensing, 14(2), pp.1–25. https://doi.org/10.3390/rs14020242

Qi, G., Chang, C., Yang, W., Gao, P. and Zhao, G., 2021. Soil Salinity Inversion in Coastal Corn Planting Areas by the Satellite-UAV-Ground Integration Approach. Remote Sensing, 13(16), pp.1–17. https://doi.org/10.3390/rs13163100

Qian, X., Qi, H., Shang, S., Wan, H. and Wang, R., 2022. Multi-year mapping of flood autumn irrigation extent and timing in harvested croplands of arid irrigation district. GIScience & Remote Sensing, 59(1), pp.1598–1623. https://doi.org/10.1080/15481603.2022.2126342

Rafik, A., Ibouh, H., El Alaoui El Fels, A., Eddahby, L., Mezzane, D., Bousfoul, M., Amazirh, A., Ouhamdouch, S., Bahir, M., Gourfi, A., Dhiba, D. and Chehbouni, A., 2022. Soil Salinity Detection and Mapping in an Environment under Water Stress between 1984 and 2018 (Case of the Largest Oasis in Africa-Morocco). Remote Sensing, 14(7), pp.1–17. https://doi.org/10.3390/rs14071606

Rossi, M., Candiani, G., Nutini, F., Gianinetto, M. and Boschetti, M., 2023. Sentinel-2 estimation of CNC and LAI in rice cropping system through hybrid approach modelling. European Journal of Remote Sensing, 56(1), pp.1–20. https://doi.org/10.1080/22797254.2022.2117651

Sahabiev, I., Smirnova, E. and Giniyatullin, K., 2021. Spatial Prediction of Agrochemical Properties on the Scale of a Single Field Using Machine Learning Methods Based on Remote Sensing Data. Agronomy, 11(11), pp.1–16. https://doi.org/10.3390/agronomy11112266

Segarra, J., Rezzouk, F.Z., Aparicio, N., González-Torralba, J., Aranjuelo, I., Gracia-Romero, A., Araus, J.L. and Kefauver, S.C., 2023. Multiscale assessment of ground, aerial and satellite spectral data for monitoring wheat grain nitrogen content. Information Processing in Agriculture, 10(4), pp.504–522. https://doi.org/10.1016/j.inpa.2022.05.004

Söderström, M., Piikki, K., Stenberg, M., Stadig, H. and Martinsson, J., 2017. Producing nitrogen (N) uptake maps in winter wheat by combining proximal crop measurements with Sentinel-2 and DMC satellite images in a decision support system for farmers. Acta Agriculturae Scandinavica, Section B — Soil & Plant Science, 67(7), pp.637–650. https://doi.org/10.1080/09064710.2017.1324044

Song, Y., Ye, M., Zheng, Z., Zhan, D., Duan, W., Lu, M., Song, Z., Sun, D., Yao, K. and Ding, Z., 2023. Tree-Structured Parzan Estimator–Machine Learning–Ordinary Kriging: An Integration Method for Soil Ammonia Spatial Prediction in the Typical Cropland of Chinese Yellow River Delta with Sentinel-2 Remote Sensing Image and Air Quality Data. Remote Sensing, 15(17), pp.1–21. https://doi.org/10.3390/rs15174268

SUHET, 2015. Sentinel-2 User Handbook. [online] Sentinel Online. Available at: https://copernicus.eu/user-guides/document-library/-/asset_publisher/xlslt4309D5h/content/sentinel-2-user-handbook [Accessed 2 February 2024].

Swinburn, B.A., Kraak, V.I., Allender, S., Atkins, V.J., Baker, P.I., Bogard, J.R., Brinsden, H., Calvillo, A., De Schutter, O., Devarajan, R., Ezzati, M., Friel, S., Goenka, S., Hammond, R.A., Hastings, G., Hawkes, C., Herrero, M., Hovmand, P.S., Howden, M., Jaacks, L.M., Kapetanaki, A.B., Kasman, M., Kuhnlein, H.V., Kumanyika, S.K., Larijani, B., Lobstein, T., Long, M.W., Matsudo, V.K.R., Mills, S.D.H., Morgan, G., Morshed, A., Nece, P.M., Pan, A., Patterson, D.W., Sacks, G., Shekar, M., Simmons, G.L., Smit, W., Tootee, A., Vandevijvere, S., Waterlander, W.E., Wolfenden, L. and Dietz, W.H., 2019. The Global Syndemic of Obesity, Undernutrition, and Climate Change: The Lancet Commission report. Lancet (London, England), 393(10173), pp.791–846. https://doi.org/10.1016/S0140-6736(18)32822-8

Taghadosi, M.M., Hasanlou, M. and Eftekhari, K., 2019. Retrieval of soil salinity from Sentinel-2 multispectral imagery. European Journal of Remote Sensing, 52(1), pp.138–154. https://doi.org/10.1080/22797254.2019.1571870

Ustin, S.L. and Jacquemoud, S., 2020. How the Optical Properties of Leaves Modify the Absorption and Scattering of Energy and Enhance Leaf Functionality. In: J. Cavender-Bares, J.A. Gamon and P.A. Townsend, eds. Remote Sensing of Plant Biodiversity. [online] Cham: Springer International Publishing. pp.349–384. https://doi.org/10.1007/978-3-030-33157-3_14

Wang, J., Peng, J., Li, H., Yin, C., Liu, W., Wang, T. and Zhang, H., 2021. Soil Salinity Mapping Using Machine Learning Algorithms with the Sentinel-2 MSI in Arid Areas, China. Remote Sensing, 13(2), pp.1–14. https://doi.org/10.3390/rs13020305

Willett, W., Rockström, J., Loken, B., Springmann, M., Lang, T., Vermeulen, S., Garnett, T., Tilman, D., DeClerck, F., Wood, A., Jonell, M., Clark, M., Gordon, L.J., Fanzo, J., Hawkes, C., Zurayk, R., Rivera, J.A., Vries, W.D., Sibanda, L.M., Afshin, A., Chaudhary, A., Herrero, M., Agustina, R., Branca, F., Lartey, A., Fan, S., Crona, B., Fox, E., Bignet, V., Troell, M., Lindahl, T., Singh, S., Cornell, S.E., Reddy, K.S., Narain, S., Nishtar, S. and Murray, C.J.L., 2019. Food in the Anthropocene: the EAT–Lancet Commission on healthy diets from sustainable food systems. The Lancet, 393(10170), pp.447–492. https://doi.org/10.1016/S0140-6736(18)31788-4

Wolters, S., Söderström, M., Piikki, K., Börjesson, T. and Pettersson, C.-G., 2022. Predicting grain protein concentration in winter wheat (Triticum aestivum L.) based on unpiloted aerial vehicle multispectral optical remote sensing. Acta Agriculturae Scandinavica, Section B — Soil & Plant Science, 72(1), pp.788–802. https://doi.org/10.1080/09064710.2022.2085165

Xing, N., Huang, W., Ye, H., Dong, Y., Kong, W., Ren, Y. and Xie, Q., 2022. Remote sensing retrieval of winter wheat leaf area index and canopy chlorophyll density at different growth stages. Big Earth Data, 6(4), pp.580–602. https://doi.org/10.1080/20964471.2021.1918909

Zhang, Q., Liu, M., Zhang, Y., Mao, D., Li, F., Wu, F., Song, J., Li, X., Kou, C., Li, C. and Man, W., 2023a. Comparison of Machine Learning Methods for Predicting Soil Total Nitrogen Content Using Landsat-8, Sentinel-1, and Sentinel-2 Images. Remote Sensing, 15(11), pp.1–22. https://doi.org/10.3390/rs15112907

Zhang, W., Zhu, L., Zhuang, Q., Chen, D. and Sun, T., 2023b. Mapping Cropland Soil Nutrients Contents Based on Multi-Spectral Remote Sensing and Machine Learning. Agriculture, 13(8), pp.1–19. https://doi.org/10.3390/agriculture13081592

Zhao, H., Song, X., Yang, G., Li, Z., Zhang, D. and Feng, H., 2019. Monitoring of Nitrogen and Grain Protein Content in Winter Wheat Based on Sentinel-2A Data. Remote Sensing, 11(14), pp.1–25. https://doi.org/10.3390/rs11141724

Zhao, X., Wu, B., Xue, J., Shi, Y., Zhao, M., Geng, X., Yan, Z., Shen, H. and Fang, J., 2023. Mapping Forage Biomass and Quality of the Inner Mongolia Grasslands by Combining Field Measurements and Sentinel-2 Observations. Remote Sensing, 15(8), pp.1–17. https://doi.org/10.3390/rs15081973

Zhao, Y., Potgieter, A.B., Zhang, M., Wu, B. and Hammer, G.L., 2020. Predicting Wheat Yield at the Field Scale by Combining High-Resolution Sentinel-2 Satellite Imagery and Crop Modelling. Remote Sensing, 12(6), pp.1–20. https://doi.org/10.3390/rs12061024

Zsigmond, T., Braun, P., Mészáros, J., Waltner, I. and Horel, Á., 2022. Investigating Plant Response to Soil Characteristics and Slope Positions in a Small Catchment. Land, 11(6), pp.1–18. https://doi.org/10.3390/land11060774




URN: http://www.revista.ccba.uady.mx/urn:ISSN:1870-0462-tsaes.v27i2.54749

DOI: http://dx.doi.org/10.56369/tsaes.5474



Copyright (c) 2024 JOSE LUIS García-Hernández, RAUL EDUARDO Lugo-Palacios, ARON DAVID Lugo-Palacio, Edgar Omar Rueda Puente

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.