ANTIBIOSIS AND ANTIXENOSIS IN TOMATO GENOTYPES AGAINST Helicoverpa armigera HUBNER
Abstract
Keywords
Full Text:
PDFReferences
Alabi, O.Y., Odebiyi J.A. and Tamo M., 2006. The relationship between primary metabolities in reproductive structures of cowpea Vigna unguiculata (Fabaceae: Papilionidae) cultivars and field resistance to the flower bud thrips Megalurothrips sjostedti (Thysanoptera: Thripdae). International Journal of Tropical Insect Science, 26(1), pp. 8-15. http://doi.org/10.1079/IJT200696
Coelho, M., Godoy A.F., Baptista, Y.A., Bentivenha, J.P.F., Lourenção, A.L., Baldin, E.L.L. and Catchot, A.L., 2019. Assessing Soybean Genotypes for Resistance to Helicoverpa armigera (Lepidoptera: Noctuidae). Journal of Economic Entomology, 20(20), pp. 1–11. https://doi.org/10.1093/jee/toz269
Danuta, G., Agata, W., Anna, J., Krzysztof, D., Jadwiga, H., Przemys?aw, ?.K., Jaros?aw, W. 2020. Lycopene in tomatoes and tomato products. Journal of Open Chemistry, 18: pp. 752-756. https://doi.org/10.1515/chem-2020-0050
de Castro, A.A., Tavares, W.D., Collatz, J., Pereira, A.D, Serrão, J.E., Zanuncio, J.C., 2015. Antibiosis of tomato, Solanum lycopersicum (Solanaceae) plants to the Asopinae predator Supputius cincticeps (Heteroptera: Pentatomidae). Journal of Research Report, pp. 179-187. https://doi.org/10.1603/an12070
Dixit, G., Praveen, A., Tripathi, T., Yadav, V.K., Verma, P.C., 2017. Herbivore responsive cotton phenolics and their impact on insect performance and biochemistry. Journal of Asia-Pacific Entomology, 20, pp. 341 - 351. https://doi.org/10.1016/j.aspen.2017.02.002
Dube, J.; Ddamulira, G.; Maphosa, M., 2020. Tomato breeding in sub-Saharan Africa-Challenges and opportunities: A review Crop Science. Journal of African crop science, 28, pp. 131–140. http://doi.org/10.4314/acsj.v28i1.10
Dubois M., Gilles K.A., Hamilton J.K., Smith F., 1956. A colorimetric method for the determination of sugars. Journal of Analytical Chemistry, 28(3), pp. 350-356. https://doi.org/10.1021/ac60111a017
Erdogan, M.K., Agca, C.A., Ask?n, H., 2020. Achillea biebersteinii extracts suppress angiogenesis and enhance sensitivity to 5-fluorouracil of human colon cancer cells via the PTEN/AKT/mTOR pathway in vitro. Asian Pacific Journal of Tropical Biomedicine, 10, pp. 505–515. https://doi.org/10.4103/2221-1691.294091
Gacemi A., Ahmed T., Djamel B. and Kheirddine T., 2022. Effect of host plants on nutritional performance of cotton bollworm, Helicoverpa armigera (Lepidoptera: Noctuidae). Journal of Crop Protection, 11 8(3), pp 389 – 399. http://doi.org/10.5923/j.ajmms.20190902.01
Golan K., Sempruch C., Go´rska-Drabik, E., Czerniewicz, P., ?agowska, B., Kot, I., Kmiec, K., Magierowicz, K., Bogumi? Leszczyn´sk, B., 2017. Accumulation of amino acids and phenolic compounds in biochemical plant responses to feeding of two different herbivorous arthropod pests. Arthropod-Plant Interactions, 11, pp 675–682. https://doi.org/10.1007/s11829-017-9522-8
Hashemi, Z., Ebrahimzadeh, M.A., and Khalili, M., 2021. Sun protection factor, total phenol, flavonoid contents and antioxidant activity of medicinal plants from Iran. Tropical Journal of Pharmaceutical Research, 18(7), 1443–1448. https://doi.org/10.4314/tjpr.v18i7.11
Javaid, I., Dadson, R.B., Hashem F.H., Joshi, J., 2006. Antibiosis of forage soybean as an ecological alternative for the control of corn earworm. Journal of Agronomy for Sustainable Development, 26 (1), pp. 55-59. https://doi.org/10.1051/agro:2005060
Kamel, A.M. and El-Gengaihi, S.E. 2009. Is there a relationship between the level of plant metabolites in cucumber and globe cucumber and the degree of insect infestation? Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 37(1), pp. 144. https://doi.org/10.15835/nbha3713111
Kaur, C. and Kapoor, H., 2002. Antioxidant activity and total phenolic content of some Asian vegetables. International Journal of Food Science and Technology, 37, pp. 153-162. https://doi.org/10.1046/j.1365-2621.2002.00552.x
Kiri?ik M., Ünlü M., Erler F., 2020. Evaluation of some melon lines for their resistance against melon aphid, Aphis gossypii Glover Turkish Journal of Agriculture and Forestry, 44: pp 322-329, https://doi.org/10.3906/tar-1905-22
Kouhi, D, Naseri, B, Golizadeh, A., 2014. Nutritional performance of the tomato fruit borer, Helicoverpa armigera, on different tomato cultivars. Journal of Insect Science, 14(102), pp. 1-12. https://doi.org/10.1093/jis/14.1.102
Krisnawati, A., Bayu M.S.Y., Adie M.M., 2017. Identification of soybean genotypes baded on antixenosis and antibiosis to the armyworm (Spodoptera litura). Journal of Nuasntara Bioscience, 9(2), pp. 164-169. https://doi.org/10.13057/nusbiosci/n090210
Latha, E.S., Sharma, H.C., & Gowda, C.L.L., 2018. Antibiosis mechanism of resistance to Helicoverpa armigera (Hub.) in chickpea (Cicer arietinum Linn.). International Journal of Plant Protection, 11(1), pp. 56–64. https://doi.org/10.15740/has/ijpp/11.1/56-64
Mantzoukas, S., Denaxa N. and Lagogiannis I., 2019. Efficacy of Metarhizium Anisopliae and Bacillus Thuringiensis against Tomato Leafminer Tuta Absoluta Meyrick (Lepidoptera: Gelechiidae). Current Agriculture Research Journal, 7(1), pp. 37-45. https://doi.org/10.12944/carj.7.1.05
Mrosso, S.E., Ndakidemi, P. A., Mbega, E. R. 2022. Characterization of Secondary Metabolites Responsible for the Resistance of Local Tomato Accessions to Whitefly (Bemisia tabaci, Gennadius 1889) Hemiptera in Tanzania. Journal of Crops, 2, pp. 445–460. https://doi.org/10.3390/ crops204003. https://doi.org/10.3390/crops2040032
Ngugi-Dawit, A., Hoang, T.M.L., Williams, B., Higgins, T.J.V., & Mundree, S.G. (2020). A Wild Cajanus scarabaeoides (L.), Thouars, IBS 3471, for Improved Insect-Resistance in Cultivated Pigeonpea. Agronomy, 10(4), pp. 517. https://doi.org/10.3390/agronomy10040517
Omotoso, F.D. and Alabi O.Y., 2023. Field evaluation of tomato (Solanum lycopersicum L.) varieties for resistance to tomato fruit borer (Helicoverpa armigera Hubner) in southwestern Nigeria. Tropical Agriculture, 100(4), pp.290- 300. https://journals.sta.uwi.edu/ojs/index.php/ta/article/view/8543
Pavunraj, M., Baskar, K., Arokiyaraj, S., Ignacimuthu, S., Alqarawi, A.A., & Hashem, A., 2021. Karyomorphological effects of two new oil formulations on Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae). Saudi Journal of Biological Sciences, 28(3), pp. 1514–1518. https://doi.org/10.1016/j.sjbs.2020.12.010
Puri S., Singh S, and Sohal S.K., 2022. Journal of Comparative Biochemistry and Physiology Part C: Toxicology and pharmacology. Volume 255, article 109291 https://doi.org/10.1016/.cbpc.2022.109291
Ramadan M.E, Mohamed A.S. and Abdelhadi A.I., 2020. The Joint Action of Entomopathogenic Nematodes Mixtures and Chemical Pesticides on Controlling Helicoverpa armigera (Hübner). Egyptian Academic Journal of Biological Sciences. 12(1), pp 101-116. https://doi.org/10.21608/eajbsf.2020.80376
Ramaroson, M.L., Koutouan, C., Helesbeux, J.J., Le Clerc, V., Hamama, L., Geoffriau, E., and Briard, M., 2022. Role of Phenylpropanoids and Flavonoids in Plant Resistance to Pests and Diseases. Molecules, 27(23), pp. 8371. https://doi.org/10.3390/molecules27238371
Reddy, D.V. and Tayde, A.R., 2023. Comparative efficacy of different insecticides against fruit borer, Helicoverpa armigera (Hubner) on tomato, Solanum lycopersicon (L.). Annals of Plant Protection Sciences, 31(2), pp. .122–126. https://doi.org/10.5958/0974-0163.2023.00037.x
Saad, A.M., El-Saadony, M.T., Mohamed, A.S., Ahmed, A.I., Sitohy, M.Z., 2021. Impact of cucumber pomace fortification on the nutritional, sensorial and technological quality of soft wheat flour-based noodles. International Journal of Food Science and Technology (56), pp. 3255–3268. https://doi.org/10.1111/ijfs.14970/v3/response1
Sarkar S., Mondal M., Ghosh P., Saha M. and Chatterjee S., 2020. Quatification of total protein content from some traditionally used edible plant leaves: A comparative study. Journal of Medicinal Plants Studies, 8(4). pp. 166-170. https://doi.org/10.22271/plants.2020.v8.i4c.1164
Sharma, H.C., Sujana, G., & Manohar Rao, D., 2009. Morphological and chemical components of resistance to pod borer, Helicoverpa armigera in wild relatives of pigeonpea. Arthropod-Plant Interactions, 3(3) pp151–161. https://doi.org/10.1007/s11829-009-9068-5
Smith, C., 2005. Plant Resistance to Arthropods. In: C.M. Smith, ed. Molecular and Conventional Approaches. Dordrecht:Springer. http://doi.org/10.1007/1-4020-3702-3
Sujana, G., Sharma, H. C., & Manohar Rao, D., 2012. Pod surface exudates of wild relatives of pigeonpea influence the feeding preference of the pod borer, Helicoverpa armigera. Arthropod-Plant Interactions, 6(2), pp 231–239. https://doi.org/10.1007/s11829-011-9179-7
Sun, L., Hou, W., Zhang, J., Dang, Y., Yang, Q., Zhao, X., Ma, Y. and Tang, Q., 2021. Plant Metabolites Drive Different Responses in Caterpillars of Two Closely Related Helicoverpa Species. Journal of Frontier Physiology, 12, p. 662978. http://doi.org/10.3389/fphys.2021.662978
Talukder, P., Dutta, D., Ghosh, E., Bose, I. and Bhattacharjee, S., 2021. Role of plant secondary metabolites in combating pest induced stress in brinjal (Solanum melongena L.). Journal of Environmental Engineering and Landscape Management, 29, pp. 449-453. https://doi.org/10.3846/jeelm.2021.14432
Villegas, J.M., Wilson, B.E., and Stout, M.J. 2021. Integration of Host Plant Resistance and Cultural Tactics for Management of Root- and Stem-Feeding Insect Pests in Rice. Frontiers in Agronomy, 3, p. 754673. https://doi.org/10.3389/fagro.2021.754673
Yadav, S.P.S., Lahutiya, V., Paudel, P., 2022. A Review on the Biology, Ecology, and Management Tactics of Helicoverpa armigera (Lepidoptera: Noctuidae). Turkish Journal of Agriculture - Food Science and Technology, 10(12), pp 2467-2476. https://doi.org/10.24925/turjaf.v10i12.2467-2476.5211
URN: http://www.revista.ccba.uady.mx/urn:ISSN:1870-0462-tsaes.v27i2.54074
DOI: http://dx.doi.org/10.56369/tsaes.5407
Copyright (c) 2024 Folorunso Dotun Omotoso, Olajumoke Yemisi Alabi, Mobolade D. Akinbuluma, Olajumoke Oke Fayinminnu

This work is licensed under a Creative Commons Attribution 4.0 International License.