DYNAMICS AND ECOLOGICAL VULNERABILITY OF THE SIERRA DEL TENTZO STATE RESERVE, MEXICO

Martin Neri Suárez, Angel Bustamante Gonzalez, Samuel Vargas López, Benito Ramírez Valverde, José Luis Jaramillo Villanueva, Francisco J. Escobedo

Abstract


Background: Knowledge and evaluation of ecological changes in Protected Natural Areas is important for their planning and management. The use of tools such as land use change prediction models and satellite image analysis are low-cost and high-precision alternatives that can contribute to this purpose. Objective: Estimate the trend of land use change and vulnerability of the ecosystems of the Sierra del Tentzo State Reserve (REST), Mexico. Methodology: The REST sites with the highest probability of change in their ecosystems were identified according to phases of the adaptive cycles of the Panarchy theory; the use of Landsat images to classify land use and vegetation types, and the identification of areas of greatest vulnerability with a Markov chain model. Results: The trend of change from a state of conservation to a state of growth predominates in the reserve, which indicates a deterioration of the ecosystems with primary vegetation that are being transformed into grasslands and crop areas. While, in the future projection, the areas with greater ecological vulnerability are grouped in a pattern associated with human settlements in population centers. Implications: The study was on a regional scale, so changes and vulnerability at the local level were not explored. Conclusion: In the Sierra del Tentzo State Reserve there is a process of ecosystem degradation and some areas, particularly those most susceptible to human activities, are more vulnerable to this degradation. These areas should be considered in the reserve management program as priority attention.

Keywords


adaptive cycle; conservation status; ecosystems; Markov chains; Protected Natural Areas.

Full Text:

PDF

References


Allen, C. R., Angeler, D.G., Garmestani, A.S., Gunderson, L.H. and Holling, C.S., 2014. Panarchy: theory and application. Ecosystems, 17(4), pp. 578–89. https://doi.org/10.1007/s10021-013-9744-2

Barborak, J.R., 2021. 30 % Para 2030: América Latina y La Nueva meta global para sus sistemas de áreas protegidas. Revista de Ciencias Ambientales, 55(2), pp. 349-359. https://doi.org/10.15359/rca.55-2.19

Carreiro, M.M. and Zipperer, W.C., 2011. Co-Adapting societal and ecological interactions following large disturbances in urban park woodlands. Austral Ecology, 36(8), pp. 904–15. https://doi.org/10.1111/j.1442-9993.2010.02237.x

Colman, C.B., Guerra, A., Roque F.O., Rosa, M.D. and Sanches P.T., 2022. Identifying priority regions and territorial planning strategies for conserving native vegetation in the Cerrado (Brazil) under different scenarios of land Use changes. Science of the Total Environment, 807, pp. 150998. https://doi.org/10.1016/j.scitotenv.2021.150998

Dakos, V., Carpenter S. R., Van Nes, E.H. and Scheffer, M., 2015. Resilience indicators: prospects and limitations for early warnings of regime shifts. Philosophical Transactions of the Royal Society B: Biological Sciences, 370(1659), pp.20130263. https://doi.org/10.1098/rstb.2013.0263

De la Mora-De la Mora, G. and López-Miguel, C., 2022. Challenges in the management of urban natural protected area systems and the conservation of ecosystem services in Guadalajara and Monterrey, Mexico. Land Use Policy, 114, pp.105987. https://doi.org/10.1016/j.landusepol.2022.105987

Downey, S.S., 2010. Can properties of labor-exchange networks explain the resilience of swidden agriculture?. Ecology and Society, 15(4), pp.15. http://www.ecologyandsociety.org/vol15/iss4/art15/

Eastman, J.R., 2016. TerrSet: Geospatial Monitoring and Modelling System. Tutorial. Worcester, MA. https://clarklabs.org/wp-content/uploads/2016/10/TerrSet-Tutorial.pdf

Filatova, T.J., Polhill, G and, Van Ewijk, S., 2016. Regime shifts in coupled socio-environmental systems: review of modelling challenges and approaches. Environmental Modelling and Software, 75, pp. 333–47. https://doi.org/10.1016/j.envsoft.2015.04.003

Gupta, R., and Sharma, L.K., 2020. Efficacy of Spatial Land Change Modeler as a forecasting indicator for anthropogenic change dynamics over five decades: A case study of Shoolpaneshwar Wildlife Sanctuary, Gujarat, India. Ecological Indicators, 112, pp. 106171. https://doi.org/10.1016/j.ecolind.2020.106171

Halefom, A., Teshome, A., Sisay, E., Khare, D., Dananto, M., Singh, L. and Tadesse, D., 2018. Applications of remote sensing and GIS in land use/land cover change detection: a case study of Woreta Zuria watershed, Ethiopia. Applied Research Journal of Geographic Information System, 1(1), pp. 1–9. https://skies.education/applications-of-remote-sensing-and-gis-in-land-use-land-cover-change-detection-a-case-study-of-woreta-zuria-watershed-ethiopia/

Hernández-Cavazos, M.C., Sandoval-García, R., Molina-Guerra, V.M. and Alanís-Rodríguez, E., 2023. Análisis multitemporal del cambio de uso de suelo en el municipio de Linares, Nuevo León. Ecosistemas y Recursos Agropecuarios, 10(2), pp. e3743. https://doi.org/10.19136/era.a10n2.3743

Iacono, M., Levinson, D., El-Geneidy A. and Wasfi, R., 2015. A Markov chain model of land use change. Journal of Land Use, Mobility and Environment, 8(3), pp. 263-276. https://doi.org/10.6092/1970-9870/2985

INEGI, 1997. Conjunto de datos vectoriales de uso de suelo y vegetación. Escala 1:250000, Serie I. Instituto Nacional de Estadística y Geografía. http://geoportal.conabio.gob.mx/metadatos/doc/html/usv250kcs1agw.html

INEGI, 2009. Conjunto de datos vectoriales de uso de suelo y vegetación. Escala 1:250000, Serie IV. Instituto Nacional de Estadística y Geografía. http://geoportal.conabio.gob.mx/metadatos/doc/html/usv250ks4gw.html

INEGI, 2016. Conjunto de datos vectoriales de uso de suelo y vegetación. Escala 1:250 000, Serie VI. Instituto Nacional de Estadística y Geografía{ http://geoportal.conabio.gob.mx/metadatos/doc/html/usv250s6gw.html

Lu, X., Yuyu, Z., Yaling, L. and Yannick, L.P., 2017. The role of protected areas in land use/land cover change and the carbon cycle in the conterminous United States. Global Change Biology, 24(2), pp. 617–30. https://doi.org/10.1111/gcb.13816

Mendoza-Ponce, A., Corona-Núñez, R.O., Galicia, L. and Kraxner, F., 2019. Identifying hotspots of land use cover change under socioeconomic and climate change scenarios in Mexico. Ambio, 48, pp. 336–349. https://doi.org/10.1007/s13280-018-1085-0

Mohamed, S.A. and El-Raey, M., 2018. Assessment, prediction and future simulation of land cover dynamics using remote sensing and GIS techniques. Assiut University Bulletin for Environmental Researches, 21(2), pp. 37–49. https://doi.org/10.21608/auber.2018.133172

Pérez Hernández, M. J., Hernández Acosta, E., Sánchez Jiménez, R., González Gervacio, C. and Madrigal Reyes, S., 2021. Dinámica de cambios de uso de suelo y vegetación por actividades antropogénicas en Zaachila, Oaxaca. Revista Mexicana de Ciencias Forestales, 12(66), pp.26-45. https://doi.org/10.29298/rmcf.v12i66.894

Sahagún-Sánchez, F. J. and Reyes-Hernández, H., 2018. Impactos por cambio de uso de suelo en las áreas naturales protegidas de la región central de la Sierra Madre Oriental, México. CienciaUAT, 12(2), 6-21. https://doi.org/10.29059/cienciauat.v12i2.831

SDRSO, 2011. Polígono del área natural protegida “Parque Estatal Sierra Del Tentzo”. Secretaria de Desarrollo Rural, Sustentabilidad y Ordenamiento Territorial. https://www.conacyt.gob.mx/cibiogem/images/cibiogem/sistema_nacional/documentos/ANPL/Pue/ANP-Sierra-del-Tentzo.pdf

Subedi, P., Subedi, K. and Thapa, B., 2013. Application of a hybrid cellular automaton – Markov (CA-Markov) model in land-use change prediction: a case study of Saddle Creek Drainage Basin, Florida. Applied Ecology and Environmental Sciences, 1 (6), pp. 126-132. https://doi.org/10.12691/aees-1-6-5

Viera, A.J. and Garrett, J.M., 2005. Understanding interobserver agreement: the Kappa statistic. Family Medicine, 37(5), pp. 360-363. https://pubmed.ncbi.nlm.nih.gov/15883903/

Warner, K., 2011. Environmental change and migration: methodological considerations from ground-breaking global survey. Population and Environment, 33(1), pp. 3–27. https://doi.org/10.1007/s11111-011-0150-4




URN: http://www.revista.ccba.uady.mx/urn:ISSN:1870-0462-tsaes.v27i3.53109

DOI: http://dx.doi.org/10.56369/tsaes.5310



Copyright (c) 2024 Angel Bustamante Gonzalez, Martin Neri Suárez, Samuel Vargas López, José Luis Jaramillo Villanueva, Benito Ramírez Valverde, Francisco J. Escobedo

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.