SPROUTING RESPONSES OF Solanum tuberosum L. MINITUBERS TO HYDROGEN PEROXIDE AND SALICYLATE TREATMENT

Daimon Keller-Muñoz, Ricardo Martinez-Gutierrez, Martha E. Mora-Herrera, R. Flores-Lopez, Humberto Antonio Lopez-Delgado

Abstract


Background: Little is known about the long-term physiological effects of salicylic acid (SA) and hydrogen peroxide H2O2 on sprouting potato tubers and their possible short- and long-term effects as signaling molecules. Objective: To evaluate the effects of SA and H2O2 on the control of minituber sprouting. Methodology: The following research was carried out at the INIFAP facilities, Sitio Experimental Metepec, Edo. of Mexico. Microplants were transplanted into the soil in a greenhouse and sprayed twice a week with H2O2 (1, 5 mM)  or SA (10-5, 10-6 M), the number and fresh weight of minitubers per plant were evaluated. Subsequently, the minitubers were stored for sprouting, keeping half of each treatment at 8 °C and the other half at 18 °C. After 60 days of storage at 8 °C, the percentage, length and number of shoots per tuber were evaluated. Results: Low concentrations of H2O2 and SA significantly improved the sprouting percentage, while high concentrations significantly reduced it. Shoot length was reduced by 40% after treatment with 5 mM H2O2 and 10-6 M SA. After 60 days of storage at 18 °C, low concentrations of these molecules such as 1 mM H2O2 and 10-6 M SA reduced the sprouting percentage. The number of shoots per minituber increased by 10-5 M SA. Implications: This work demonstrated the potential of SA and H2O2 for practical application and tuber sprouting research. Conclusion: The results suggest that SA and H2O2 induce postharvest physiological effects on the sprouting of minitubers from the moment the plant is in cultivation.

Keywords


long term effects; potato; storage; tuber dormancy.

Full Text:

PDF

References


Aguilar-Camacho, M., Mora-Herrera, M.E. and López-Delgado, H.A., 2016. Potato virus X (PVX) elimination as short and long-term effects of hydrogen peroxide and salicylic acid is differentially mediated by oxidative stress in synergism with thermotherapy. American Journal of Potato Research, 93, pp,360-367. https://doi.org/10.1007/s12230-016-9509-5

Aksenova, N.P., Sergeeva, L.I., Konstantinova, T.N., Golyanovskaya, S.A., Kolachevskaya, O.O., Romanov, G.A., 2013. Regulation of potato tuber dormancy and sprouting. Russian Journal of Plant Physiology, 60, pp. 301–312. https://doi.org/10.1134/S1021443713030023

Bajji, M., M´Hamdi, M., Gastiny, F., Rojas-Beltran, J.A., Du Jardin, P., 2007. Catalase inhibition accelerates dormancy release and sprouting in potato (Solanum tuberosum L.) tubers.Biotechnologie Agronomie, Société et Environnment, 11, (2), pp. 121–13. URL: https://popups.uliege.be/1780-4507/index.php?id=687. 20/10/2023.

Börnke, F., Sonnewald, U., Biemelt. S., 2007. Potato. In: Pua, E.C., Davey, M.R., Biotechnology in agriculture and forestry. Berling, Heidelberg. Springer, 59, pp 297-315 https://doi.org/10.1007/978-3-540-36752-9_16

Chamnongpol, S., Willekens, H., Langebartels, C., Van Montagu, M., Inzé, D., Camp, W.V., 1996. Transgenic tobacco with a reduced catalase activity develops necrotic lesions and induces pathogenesis-related expression under high light. The Plant Journal, 10, (3), pp. 491-503. https://doi.org/10.1046/j.1365-313X.1996.10030491.x

Bryan, J.E. 1989. Breaking dormancy of potato tubers. CIP Research Guide16. International Potato Center, Lima, Peru. 12 p. https://pdf.usaid.gov/pdf_docs/PNABE714.pdf. 20/10/23.

Coleman, W.K. and Coleman, S.E., 2000. Modification of potato microtuber dormancy during induction and growth in vitro and ex vitro. American Journal of Potato Research, 77, pp. 103–110. https://doi.org/10.1007/BF02853737

Dat, J.F., López-Delgado, H., Foyer, C.H., Scott, I.M., 2000. Effects of salicylic acid on oxidative stress and thermotolerance in tobacco. Journal of Plant Physiology, 156, (5-6), pp. 659-665. https://doi.org/10.1016/S0176-1617(00)80228-X

Duncan, D.B., 1955. Multiple range and multiple F tests. Biometric, 11, pp. 1-42. https://doi.org/10.2307/3001478

Hartmans, K.J. and Van Loon, C.D., 1987. Effect of physiological age on growth vigour of seed potatoes of two cultivars. I. Influence of storage period and temperature on sprouting characteristics. Potato Research, 30, pp. 397–410. https://doi.org/10.1007/BF02361918

Hosseini, M.B., Afshari, R.T., Salimi, K., 2011. Breaking dormancy of potato minitubers with thiourea. Potato Journal, 38, (1), pp. 9-12.

Johansen, T.J., Mollerhagen, P., Haugland, E., 2008. Yield potential of seed potatoes grown at different latitudes in Norway. Acta Agriculturae Scandinavica, section B, Soil & Plant Science, 58, (2), pp.132-138. https://doi.org/10.1080/09064710701412635.

Kwak, J., Nguyen, V., Schoeder, J., 2006. The role of reactive oxygen species in hormonal responses. Plant Physiology, 141, (2), pp. 323-329. https://doi.org/10.1104/pp.106.079004.

Lang, G.A., Early, J.D., Martin, G.C., Darnell, R.L., 1987. Endo-, para-, and ecodormancy: physiological terminology and classification for dormancy research. HortScience, 22, (3), pp. 371-377. https://doi.org/10.21273/HORTSCI.22.3.371

López-Delgado, H., Dat, J.F., Foyer, C.H., Scott, I.M., 1998a. Induction of thermotolerance in potato microplants by acetylsalicylic acid and H2O2. Journal of Experimental Botany, 49, (321), pp. 713-720. https://doi.org/10.1093/jxb/49.321.713

López-Delgado, H., Jiménez-Casas, M., Scott, I.M., 1998b. Storage of potato microplantsin vitro in the presence of acetyl salicylic acid. Plant Cell, Tissue Organ Culture, 54, pp. 145-152 https://doi.org/10.1023/A:1006110118669

López-Delgado, H.A., Martínez-Gutiérrez, R., Mora-Herrera, M.E., Torres-Valdes, Y., 2018. Induction of freezing tolerance by the application of hydrogen peroxide and salicylic acid as tuber-dip or canopy spraying in Solanum tuberosum L. plants. Potato Research, 61, pp. 195-206. https://doi.org/10.1007/s11540-018-9368-1

López-Delgado, H.A., Sánchez-Rojo, S., Martínez-Gutiérrez, R., Mora-Herrera, M.A., 2012. Micro-tuberization as a long term effect of hydrogen peroxide on potato plants. American Journal of Potato Research, 89, pp. 240-244. https://doi.org/10.1007/s12230-011-9219-y

López-Delgado, H., Scott, I., 1997. Induction of in vitro tuberization of potato microplants by acetylsalicylic acid. Journal of Plant Physiology, 151, (1), pp. 74-78. https://doi.org/10.1016/S0176-1617(97)80039-9

M´Hamdi, M., Chikh-Rouhou, H., Saidi, W., Essid, F., Bajji, M., Du Jardin, P., 2014. Effect of genetic modification of catalase activity on the dormancy and the sprouting of potato mini tubers (Solanum Tuberosum L.). International Journal of Emerging Technology and Advanced Engineering, 4, (12), pp. 66-71. https://www.ijetae.com/files/Volume4Issue12/IJETAE_1214_10.pdf 20/10/2023.

Mani. F., Bettaieb, T., Doudech, N., Hannachi, C., 2014. Physiological mechanisms for potato dormancy release and sprouting: a review. African Crop Science Journal, 22, (2), pp. 155-174. file:///C:/Users/sah/Downloads/ajol-file-journals_176_articles_104945_submission_proof_104945-2101-283820-1-10-20140702%20(1).pdf .20/10/2023.

Mani, F. and Hannachi, C., 2015. Physiology of potato sprouting. Journal of New Sciences, Agriculture and Biotechnology, 17, (2), pp. 591-602.

Martínez-Gutiérrez, R., Mora-Herrera, M.E., López-Delgado, H.A., 2012. Exogenous H2O2 in Phytoplasma-Infected Potato Plants Promotes Antioxidant Activity and Tuber Production Under Drought Conditions. American Journal of Potato Research, 89, pp. 53-62. https://doi.org/10.1007/s12230-011-9220-5 .

Mora-Herrera, M.E., López-Delgado, H., Castillo-Morales, A., Foyer, C.H., 2005. Salicylic acid and H2O2 function by independent pathways in the induction of freezing tolerance in potato. Physiologia Plantarum, 125, pp. 430-440. https://doi.org/10.1111/j.1399-3054.2005.00572.x

Mora-Herrera, M,E., Lopez-Delgado, H.A., 2006. Tolerancia a baja temperatura microplantas de papa inducida por ácido salicílico y peróxido de hidrógeno en microplantas de papa. Revista Fitotecnia Mexicana, 29 (2), pp. 81-85. https://revistafitotecniamexicana.org/documentos/29-2%20Especial%202/14a.pdf .20/10/2023

Murashige, T. and Skoog, F., 1962. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiologia Plantarum, 15, pp. 473-497. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x

Muthoni, J., Kabira, J., Shimelis, H., Melis, R., 2014. Regulation of potato tuber dormancy: A review. Australian Journal of Crop Science, 8, (5), pp. 754-759. https://www.researchgate.net/publication/262412947_Regulation_of_potato_tuber_dormancy_A_review

Rehman, K., Lee, A., Khabir, H., Joung, V., Yada, R., 2003. Evaluation of various chemicals on dormancy breaking and subsequent effects on growth and yield in potato micro tubers under greenhouse conditions. Acta Horticulturae, 619, (44), pp. 375-381. https://doi.org/10.17660/ActaHortic.2003.619.44

Ridwan, I., Brown, P.H., Lisson, S.N., Wahyuni, C., 2014. Effect of temperature and water potential on sprout vigor of potato (Solanum tuberosum L.) seed tuber. International Journal of Agriculture System, 2, pp. 103-111. http://dx.doi.org/10.20956/ijas.v2i2.26

Romero-Romero, M.T., López-Delgado, H.A., 2009. Ameliorative effects of hydrogen peroxide, ascorbate and dehydroascorbate in Solanum Tuberosum Infected by phytoplasma. American Journal of Potato Research, 86, pp. 218-226. https://doi.org/10.1007/s12230-009-9075-1

Salimi, K.H., Tavakkol, A.R., Hosseini, M.B., Struik, P.C., 2010. Effects of gibberellic acid and carbon disulphide on sprouting of potato minitubers. Scientia Horticulturae, 124, pp. 14-18. https://doi.org/10.1016/j.scienta.2009.12.026

Sánchez-Rojo, S., López-Delgado, H.A., Mora-Herrera, M.E., Almeyda-León, H.I., Zavaleta-Mancera, H.A., Espinosa-Victoria, D., 2011. Salicylic Acid Protects Potato Plants-from Phytoplasma-associated Stress and Improves Tuber Photosynthate Assimilation. American Journal of Potato Research, 88, pp. 175-183. https://doi.org/10.1007/s12230-010-9175-y

Sonnewald, S. and Sonnewald, U., 2014. Regulation of potato tuber sprouting. Planta, 239, pp. 27-38. https://doi.org/10.1007/s00425-013-1968-z

Sonnewald, U., 2001. Control of potato tuber sprouting. Trends in Plant Science, 6, pp. 333-335. https://doi.org/10.1016/S1360-1385(01)02020-9

Suttle, J.C., 2004a. Involvement of endogenous gibberellins in potato tuber dormancy and early sprout growth: a critical assessment. Journal of Plant Physiology, 161, pp. 157-164. https://doi.org/10.1078/0176-1617-01222

Suttle, J.C., 2004b. Physiological regulation of potato tuber dormancy. American Journal of Potato Research, 81, pp. 253-262. https://doi.org/10.1007/BF02871767

Turnbull, C.G.N. and Hanke, D.E., 1985. The control of bud dormancy in potato tubers. Planta, 165, pp. 359-365. https://doi.org/10.1007/BF00392233

Walker, T.W. and Fuglie, K.O., 2005. Prospects for Enhancing Value of Crops through Public-Sector Research: Lessons from Experiences with Roots and Tubers. International Potato Center (CIP), Lima, Perú. https://www.sweetpotatoknowledge.org/wp-content/uploads/2016/01/Prospects-for-Enhancing-Value-of-Crops-through-Public-Sector-Research-Lessons-from-Experiences-with-Roots-and-Tubers.pdf . 20/10/2023.

Wiltshire, J.J.J. and Cobb, A.H., 1996. A review of the physiology of potato tuber dormancy. Annals of Applied Biology, 129, (3), pp. 553-569. https://doi.org/10.1111/j.1744-7348.1996.tb05776.x




URN: http://www.revista.ccba.uady.mx/urn:ISSN:1870-0462-tsaes.v28i1.53084

DOI: http://dx.doi.org/10.56369/tsaes.5308



Copyright (c) 2025 Humberto Antonio Lopez-Delgado

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.