DEFICITARY IRRIGATION INCREASES WATER PRODUCTIVITY IN Carica papaya L.
Abstract
Keywords
Full Text:
PDFReferences
Adeoye, R.I., Olopade, E.T., Olayemi, I.O., Okaiyeto, K. and Akiibinu, M.O., 2024. Nutritional and therapeutic potentials of Carica papaya Linn. seed: A comprehensive review. Plant Science Today. https://doi.org/10.14719/pst.2843
Bates, L.S., Waldren, R.P. and Teare, I.D., 1973. Rapid determination of free proline for water-stress studies. Plant and Soil. 39, pp. 205–207. https://doi.org/10.1007/bf00018060
Bayabil, H.K., Crane, J. H., Migliaccio, K.W., Li, Y., Ballen, F. and Guzmán, S., 2020. Programación de Riego Basado en el Método de Evapotranspiración Para Papaya (Carica papaya) en Florida. EDIS, 2020(6). https://doi.org/10.32473/edis-ae547-2020
Blaya-Ros, P.J., Blanco, V., Torres-Sánchez, R. and Domingo, R., 2021. Drought-Adaptive Mechanisms of Young Sweet Cherry Trees in Response to Withholding and Resuming Irrigation Cycles. Agronomy, 11, pp. 1-18. https://doi.org/10.3390/agronomy11091812
Burns, P., Saengmanee, P. and Doung-Ngern, U., 2023. Papaya: the versatile tropical fruit. En IntechOpen eBooks. https://doi.org/10.5772/intechopen.104624
Campostrini, E., Schaffer, B., Ramalho, J.D., González, J.C., Rodrigues, W.P., da Silva, J.R. and Lima, R.S., 2018. Environmental factors controlling carbon assimilation, growth, and yield of papaya (Carica papaya L.) under Water-Scarcity scenarios: In: I. F, García and V.H. Durán, eds. Water Scarcity and Sustainable Agriculture in Semiarid Environment. Oxford, UK: Academic Press. pp. 481–505.
Carbonell-Barrachina, N.A., Memmi, H., Noguera-Artiaga, L., Gijón-López, M.C., Ciapa, R. and Pérez-López, D., 2014. Quality attributes of pistachio nuts as affected by rootstock and deficit irrigation. Journal of the Science of Food and Agriculture, 95, pp. 2866–2873. https://doi.org/10.1002/jsfa.7027
Carr, M.K.V., 2013. The water relations and irrigation requirements of papaya (Carica papaya L.): A review. Experimental Agriculture, 50, pp. 270–283. https://doi.org/10.1017/s0014479713000380
De Lima, R.S.N., de Assis-Figueiredo, F.A.M.M., Martins, A.O., da Silva De Deus, B.C., Ferraz, T.M., de Menezes de Assis, M., Fernadez De Sousa, E., Gleen, D. M. and Campostrini, E., 2015. Partial rootzone drying (PRD) and regulated deficit irrigation (RDI) effects on stomatal conductance, growth, photosynthetic capacity, and water-use efficiency of papaya. Scientia Horticulturae, 183, pp. 13–22. https://doi.org/10.1016/j.scienta.2014.12.005
Dolan, F., Lamontagne, J., Link, R., Hejazi, M., Reed, P. and Edmonds, J., 2021. Evaluating the economic impact of water scarcity in a changing world. Nature Communications, 12, pp.1-10. https://doi.org/10.1038/s41467-021-22194-0
Food and Agriculture Organization of the United Nations (FAO), 2022. Valor de la producción. https://www.fao.org/faostat/es/#data/QCL (Consultado el 20 de Marzo de 2022).
Food and Agriculture Organization of the United Nations. (FAO) 2024. Food balances 2010-. https://www.fao.org/faostat/es/#data/FBS. (Consultado el 02 de septiembre de 2024).
Galindo, A., Collado-González, J., Griñan, I., Corell, M., Centeno, A., Martín-Palomo, M., Girón, I., Rodríguez, P., Cruz, Z., Memmi, H., Carbonell-Barrachina, A., Hernández, F., Torrecillas, A., Moriana, A. and Pérez-López, D., 2018. Deficit irrigation and emerging fruit crops as a strategy to save water in Mediterranean semiarid agrosystems. Agricultural Water Management, 202, pp. 311–324. https://doi.org/10.1016/j.agwat.2017.08.015
Ghaffari, H., Tadayon, M.R., Bahador, M. and Razmjoo, J., 2021. Investigation of the proline role in controlling traits related to sugar and root yield of sugar beet under water deficit conditions. Agricultural Water Management, 243, pp. 1-9. https://doi.org/10.1016/j.agwat.2020.106448
Giménez, C., Gallardo, M. and Thompson, R., 2013. Plant–Water Relations. In: Elservier eBooks. https://doi.org/10.1016/b978-0-12-409548-9.05257-x
Igbadun, H.E., Mahoo, H.F., Tarimo, A.K., and Salim, B.A., 2006. Crop water productivity of an irrigated maize crop in Mkoji sub-catchment of the Great Ruaha River Basin, Tanzania. Agricultural Water Management, 85(1-2), pp.141-150. https://doi.org/10.1016/j.agwat.2006.04.003
Islam, A.T., Islam, A.S., Islam, G.T., Bala, S.K., Salehin, M., Choudhury, A.K., Dey, N.C., and Hossain, A., 2022. Adaptation strategies to increase water productivity of wheat under changing climate. Agricultural Water Management, 264, p.107499. https://doi.org/10.1016/j.agwat.2022.107499
Jones, H.G., 1980. Interaction and integration of adaptive responses to water stress: the implications of an unpredictable environment. In: N.C, Turner, P.J, Kramer. eds. Adaptation of Plants to Water and High Temperature Stress. New York: Wiley. pp. 353-365.
Karanja, J.K., Aslam, M.M., Qian, Z., Yankey, R., Dood, I. C. and Weifeng, X., 2021. Abscisic Acid Mediates Drought-Enhanced Rhizosheath Formation in Tomato. Frontiers in Plant Science, 12, pp. 1-13. https://doi.org/10.3389/fpls.2021.658787
Liao, Q., Ding R., Du, T., Kang, S., Tong, L. and Li, S., 2022. Stomatal conductance drives variations of yield and water use of maize under water and nitrogen stress. Agricultural Water Management, 268, pp. 1-7. https://doi.org/10.1016/j.agwat.2022.107651
Liu, X., Liu, W., Tang, Q., Liu, B., Wada, Y. and Yang, H., 2022. Global agricultural water scarcity assessment incorporating blue and green water availability under future climate change. Earth’s Future, 10, pp. 1-16. https://doi.org/10.1029/2021ef002567
Luo, Y., Li, W., Huang, C., Yang, J., Jin, M., Chen, J., Pang, D., Chang, Y., Li, Y. and Wang, Z., 2021. Exogenous abscisic acid coordinating leaf senescence and transport of assimilates into wheat grains under drought stress by regulating hormones homeostasis. The Crop Journal, 9(4), pp. 901–914. https://doi.org/10.1016/j.cj.2020.08.012
Mahmood, T., Abdullah, M., Ahmar, S., Yasir, M., Iqbal, M. S., Yasir, M., Ur-Rehman, S., Ahmed, S., Rana, R. M., Ghafoor, A., Nawaz-Shah, M. K., Du, X. and Mora-Poblete, F., 2020. Incredible Role of Osmotic Adjustment in Grain Yield Sustainability under Water Scarcity Conditions in Wheat (Triticum aestivum L.). Plants, 9, pp. 1-13. https://doi.org/10.3390/plants9091208
Manjunath, B., Upretti, K., Laxman, R., Radha, T., and Raghupathi, H., 2022. Partial root-zone drying irrigation for higher water use efficiency in papaya (Carica papaya L.). Journal of Applied Horticulture, 24(02). https://doi.org/10.37855/jah.2022.v24i02.26
Manjunath, B., Laxman, R. H., Upreti, K. K. and Raghupathi, H. B., 2017. Partial root zone drying irrigation in papaya (Carica papaya L.) for enhanced water use efficiency under limited water situations. Journal Horticultural Sciences. 12. pp. 143-149. https://krishi.icar.gov.in/jspui/bitstream/123456789/17601/1/DECEMBER%3d2017.pdf
Mellado-Vázquez, A., Volke-Haller, V., Tapia-Vargas, M. and Sánchez-García, P., 2005. Response of papaya to irrigation and N-P-K fertilization in a vertisol. TERRA Latinoamericana, 23, pp. 137–144. https://www.redalyc.org/pdf/573/57311093004.pdf
Mirafuentes, H.F. and Santamaría, B.F., 2014. MSXJ, hibrido de papaya sin carpeloidia para el sureste de México. Revista Mexicana de Ciencias Agrícolas, 7, pp. 1297-1301.
Niu, Y., Zhang, K., Khan, K.S., Fudjoe, S.K., Li, L., Wang, L., and Luo, Z., 2024. Deficit Irrigation as an Effective Way to Increase Potato Water Use Efficiency in Northern China: A Meta-Analysis. Agronomy, 14(7), 1533. https://doi.org/10.3390/agronomy14071533
Osakabe, Y., Osakabe, K., Shinozaki, K. and Tran, L.P., 2014. Response of plants to water stress. Frontiers in Plant Science, 5, pp. 1-8. https://doi.org/10.3389/fpls.2014.00086
Oztürk, M., Turkyilmaz-Unal B., García?Caparrós, P., Khursheed, A., Gul, A. and Hasanuzzama, M., 2020. Osmoregulation and its actions during the drought stress in plants. Physiologia Plantarum. 172, pp. 1321–1335. https://doi.org/10.1111/ppl.13297
Raja, V., Qadir, S.U., Alyemeni, M.N. and Ahmad, P., 2020. Impact of drought and heat stress individually and in combination on physio-biochemical parameters, antioxidant responses, and gene expression in Solanum lycopersicum. 3 Biotech, 10, pp. 1-18. https://doi.org/10.1007/s13205-020-02206-4
Sadigov, R., 2022. Rapid growth of the world population and its socioeconomic results. The Scientific World Journal, pp. 1-8. https://doi.org/10.1155/2022/8110229
Santos, D.L., Coelho, E.F., Cunha, F.F.D., Donato, S.L.R., Bernado, W.D.P., Rodriguez, W.P. and Campostrini, E., 2021. Partial root-zone drying in field-grown papaya: Gas exchange, yield, and water use efficiency. Agricultural Water Management, 243, pp.1-11. https://doi.org/10.1016/j.agwat.2020.106421
Scalisi, A., O’Connell, M. G., Stefanelli, D. and lo Bianco, R., 2019. Fruit and Leaf Sensing for Continuous Detection of Nectarine Water Status. Frontiers in Plant Science, 10, pp. 1-17. https://doi.org/10.3389/fpls.2019.00805
Schmeier, S. (20 de marzo de 2022). [Entrevistado por N. M. Neil King]. https://p.dw.com/p/492Hb
Servicio de Información Agroalimentaria y Pesquera (SIAP), 2022. Anuario estadístico de la producción agrícola. Secretaria de Agricultura y Desarrollo Rural. https://nube.siap.gob.mx/cierreagricola/ (Consultado el 20 de Mayo 2022).
Shiade, S.R.G., Zand-Silakhoor, A., Fathi, A., Rahimi, R., Minkina, T., Rajput, V.D., Zulfiqar, U. and Chaudhary, T., 2024. Plant Metabolites and Signaling Pathways in Response to Biotic and Abiotic Stresses: Exploring Bio stimulant Applications. Plant Stress, 12, p.100454. https://doi.org/10.1016/j.stress.2024.100454
Stagno, F., Brambilla, M., Roccuzzo, G. and Assirelli, A., 2024. Water Use Efficiency in a Deficit-Irrigated Orange Orchard. Horticulturae, 10(5), p.498. https://doi.org/10.3390/horticulturae10050498
The Intergovernmental Panel on Climate Change (IPCC), 2022. Climate change widespread, rapid, and intensifying. Ginebra. https://www.ipcc.ch/2021/08/09/ar6-wg1-20210809-pr/ (Consultado el 15 de junio de 2022).
The World Bank. Water in Agriculture. The World Bank Group. Washington D. C. https://www.worldbank.org/en/topic/water-in-agriculture#1 (Consultado el 15 Marzo de 2022).
Wu, P., Wang, Y., Shao, J., Yu, H., Zhao, Z., Li, L., Gao, P., Li, Y., Liu, S., Gao, C., Guan, X., Wen, P., and Wang, T., 2024. Enhancing productivity while reducing water footprint and groundwater depletion: Optimizing irrigation strategies in a wheat-soybean planting system. Field Crops Research, 309, p.09331. https://doi.org/10.1016/j.fcr.2024.109331
Zapata-García, S., Temnani, A., Berrios, P., Pérez-López, R.D., Monllor, C., and Pérez-Pastor, A. 2024. Mejora de la productividad del agua de riego mediante déficit hídrico y bioestimulación en pimiento en condiciones de invernadero. In: EGU General Assembly Conference Abstracts, p. 22334.
URN: http://www.revista.ccba.uady.mx/urn:ISSN:1870-0462-tsaes.v28i1.53063
DOI: http://dx.doi.org/10.56369/tsaes.5306
Copyright (c) 2025 Carlos Trejo

This work is licensed under a Creative Commons Attribution 4.0 International License.