DEFICITARY IRRIGATION INCREASES WATER PRODUCTIVITY IN Carica papaya L.

David Trujillo-García, Ebandro Uscanga-Mortera, Marco A. Otero-Sánchez, Becerril-Román Alberto E., Davis Jaén-Contreras, Eloy Canales-Sosa, Carlos Trejo

Abstract


Background. In the face of the imminent global water scarcity, it is necessary to implement alternatives to make its use more efficient and ensure agricultural production with minimal expenditure. Objective. To determine physiological variables of Carica papaya L. under deficit irrigation (DI) which increases water productivity. Methodology. The papaya crop was established in semi-protected conditions in a shade house, in pots with a capacity of 60 kg containing sand as substrate. The treatments consisted of applying different water volumes to the substrate: Control, application of 1678 L of water per pot (maximum water retained in the substrate from 89 to 296 days after transplanting (dat), control), Treatment 1, application of 679.79 L of water per pot (41% of the maximum water retained in the substrate from 89 to 296 dat, DI-59) and Treatment 2, application of 573.6 L of water per pot (34% of the maximum water retained in the substrate from 89 to 296 dat, DI-66). The treatments were distributed in a completely randomized block experimental design with six repetitions. Treatments began at 89 and ended at 296 days after transplant (dat). Results. Stomatal conductance decreased in DI treatments; therefore, CO2 assimilation and transpiration were also negatively affected. The water potential of the leaf (Ya leaf) decreased in DI-66 with respect to the control and DI-59. However, no difference was observed between the treatments in the osmotic potential (Yo leaf) and turgor (Yp leaf) of the leaf. The proline concentration increased similarly throughout the experiment in the control and in the treatments with deficit irrigation. Implications. Water productivity increased by 2 and 2.9 times in the DI treatments compared to the control. Conclusion. The deficit irrigation strategy applied to C. papaya L. is relevant because it allows maximizing the productivity of irrigation water in a semi-protected system in subhumid tropic conditions.

Keywords


Carica papaya L.; irrigation deficit; gas exchange; water relations; proline.

Full Text:

PDF

References


Adeoye, R.I., Olopade, E.T., Olayemi, I.O., Okaiyeto, K. and Akiibinu, M.O., 2024. Nutritional and therapeutic potentials of Carica papaya Linn. seed: A comprehensive review. Plant Science Today. https://doi.org/10.14719/pst.2843

Bates, L.S., Waldren, R.P. and Teare, I.D., 1973. Rapid determination of free proline for water-stress studies. Plant and Soil. 39, pp. 205–207. https://doi.org/10.1007/bf00018060

Bayabil, H.K., Crane, J. H., Migliaccio, K.W., Li, Y., Ballen, F. and Guzmán, S., 2020. Programación de Riego Basado en el Método de Evapotranspiración Para Papaya (Carica papaya) en Florida. EDIS, 2020(6). https://doi.org/10.32473/edis-ae547-2020

Blaya-Ros, P.J., Blanco, V., Torres-Sánchez, R. and Domingo, R., 2021. Drought-Adaptive Mechanisms of Young Sweet Cherry Trees in Response to Withholding and Resuming Irrigation Cycles. Agronomy, 11, pp. 1-18. https://doi.org/10.3390/agronomy11091812

Burns, P., Saengmanee, P. and Doung-Ngern, U., 2023. Papaya: the versatile tropical fruit. En IntechOpen eBooks. https://doi.org/10.5772/intechopen.104624

Campostrini, E., Schaffer, B., Ramalho, J.D., González, J.C., Rodrigues, W.P., da Silva, J.R. and Lima, R.S., 2018. Environmental factors controlling carbon assimilation, growth, and yield of papaya (Carica papaya L.) under Water-Scarcity scenarios: In: I. F, García and V.H. Durán, eds. Water Scarcity and Sustainable Agriculture in Semiarid Environment. Oxford, UK: Academic Press. pp. 481–505.

Carbonell-Barrachina, N.A., Memmi, H., Noguera-Artiaga, L., Gijón-López, M.C., Ciapa, R. and Pérez-López, D., 2014. Quality attributes of pistachio nuts as affected by rootstock and deficit irrigation. Journal of the Science of Food and Agriculture, 95, pp. 2866–2873. https://doi.org/10.1002/jsfa.7027

Carr, M.K.V., 2013. The water relations and irrigation requirements of papaya (Carica papaya L.): A review. Experimental Agriculture, 50, pp. 270–283. https://doi.org/10.1017/s0014479713000380

De Lima, R.S.N., de Assis-Figueiredo, F.A.M.M., Martins, A.O., da Silva De Deus, B.C., Ferraz, T.M., de Menezes de Assis, M., Fernadez De Sousa, E., Gleen, D. M. and Campostrini, E., 2015. Partial rootzone drying (PRD) and regulated deficit irrigation (RDI) effects on stomatal conductance, growth, photosynthetic capacity, and water-use efficiency of papaya. Scientia Horticulturae, 183, pp. 13–22. https://doi.org/10.1016/j.scienta.2014.12.005

Dolan, F., Lamontagne, J., Link, R., Hejazi, M., Reed, P. and Edmonds, J., 2021. Evaluating the economic impact of water scarcity in a changing world. Nature Communications, 12, pp.1-10. https://doi.org/10.1038/s41467-021-22194-0

Food and Agriculture Organization of the United Nations (FAO), 2022. Valor de la producción. https://www.fao.org/faostat/es/#data/QCL (Consultado el 20 de Marzo de 2022).

Food and Agriculture Organization of the United Nations. (FAO) 2024. Food balances 2010-. https://www.fao.org/faostat/es/#data/FBS. (Consultado el 02 de septiembre de 2024).

Galindo, A., Collado-González, J., Griñan, I., Corell, M., Centeno, A., Martín-Palomo, M., Girón, I., Rodríguez, P., Cruz, Z., Memmi, H., Carbonell-Barrachina, A., Hernández, F., Torrecillas, A., Moriana, A. and Pérez-López, D., 2018. Deficit irrigation and emerging fruit crops as a strategy to save water in Mediterranean semiarid agrosystems. Agricultural Water Management, 202, pp. 311–324. https://doi.org/10.1016/j.agwat.2017.08.015

Ghaffari, H., Tadayon, M.R., Bahador, M. and Razmjoo, J., 2021. Investigation of the proline role in controlling traits related to sugar and root yield of sugar beet under water deficit conditions. Agricultural Water Management, 243, pp. 1-9. https://doi.org/10.1016/j.agwat.2020.106448

Giménez, C., Gallardo, M. and Thompson, R., 2013. Plant–Water Relations. In: Elservier eBooks. https://doi.org/10.1016/b978-0-12-409548-9.05257-x

Igbadun, H.E., Mahoo, H.F., Tarimo, A.K., and Salim, B.A., 2006. Crop water productivity of an irrigated maize crop in Mkoji sub-catchment of the Great Ruaha River Basin, Tanzania. Agricultural Water Management, 85(1-2), pp.141-150. https://doi.org/10.1016/j.agwat.2006.04.003

Islam, A.T., Islam, A.S., Islam, G.T., Bala, S.K., Salehin, M., Choudhury, A.K., Dey, N.C., and Hossain, A., 2022. Adaptation strategies to increase water productivity of wheat under changing climate. Agricultural Water Management, 264, p.107499. https://doi.org/10.1016/j.agwat.2022.107499

Jones, H.G., 1980. Interaction and integration of adaptive responses to water stress: the implications of an unpredictable environment. In: N.C, Turner, P.J, Kramer. eds. Adaptation of Plants to Water and High Temperature Stress. New York: Wiley. pp. 353-365.

Karanja, J.K., Aslam, M.M., Qian, Z., Yankey, R., Dood, I. C. and Weifeng, X., 2021. Abscisic Acid Mediates Drought-Enhanced Rhizosheath Formation in Tomato. Frontiers in Plant Science, 12, pp. 1-13. https://doi.org/10.3389/fpls.2021.658787

Liao, Q., Ding R., Du, T., Kang, S., Tong, L. and Li, S., 2022. Stomatal conductance drives variations of yield and water use of maize under water and nitrogen stress. Agricultural Water Management, 268, pp. 1-7. https://doi.org/10.1016/j.agwat.2022.107651

Liu, X., Liu, W., Tang, Q., Liu, B., Wada, Y. and Yang, H., 2022. Global agricultural water scarcity assessment incorporating blue and green water availability under future climate change. Earth’s Future, 10, pp. 1-16. https://doi.org/10.1029/2021ef002567

Luo, Y., Li, W., Huang, C., Yang, J., Jin, M., Chen, J., Pang, D., Chang, Y., Li, Y. and Wang, Z., 2021. Exogenous abscisic acid coordinating leaf senescence and transport of assimilates into wheat grains under drought stress by regulating hormones homeostasis. The Crop Journal, 9(4), pp. 901–914. https://doi.org/10.1016/j.cj.2020.08.012

Mahmood, T., Abdullah, M., Ahmar, S., Yasir, M., Iqbal, M. S., Yasir, M., Ur-Rehman, S., Ahmed, S., Rana, R. M., Ghafoor, A., Nawaz-Shah, M. K., Du, X. and Mora-Poblete, F., 2020. Incredible Role of Osmotic Adjustment in Grain Yield Sustainability under Water Scarcity Conditions in Wheat (Triticum aestivum L.). Plants, 9, pp. 1-13. https://doi.org/10.3390/plants9091208

Manjunath, B., Upretti, K., Laxman, R., Radha, T., and Raghupathi, H., 2022. Partial root-zone drying irrigation for higher water use efficiency in papaya (Carica papaya L.). Journal of Applied Horticulture, 24(02). https://doi.org/10.37855/jah.2022.v24i02.26

Manjunath, B., Laxman, R. H., Upreti, K. K. and Raghupathi, H. B., 2017. Partial root zone drying irrigation in papaya (Carica papaya L.) for enhanced water use efficiency under limited water situations. Journal Horticultural Sciences. 12. pp. 143-149. https://krishi.icar.gov.in/jspui/bitstream/123456789/17601/1/DECEMBER%3d2017.pdf

Mellado-Vázquez, A., Volke-Haller, V., Tapia-Vargas, M. and Sánchez-García, P., 2005. Response of papaya to irrigation and N-P-K fertilization in a vertisol. TERRA Latinoamericana, 23, pp. 137–144. https://www.redalyc.org/pdf/573/57311093004.pdf

Mirafuentes, H.F. and Santamaría, B.F., 2014. MSXJ, hibrido de papaya sin carpeloidia para el sureste de México. Revista Mexicana de Ciencias Agrícolas, 7, pp. 1297-1301.

Niu, Y., Zhang, K., Khan, K.S., Fudjoe, S.K., Li, L., Wang, L., and Luo, Z., 2024. Deficit Irrigation as an Effective Way to Increase Potato Water Use Efficiency in Northern China: A Meta-Analysis. Agronomy, 14(7), 1533. https://doi.org/10.3390/agronomy14071533

Osakabe, Y., Osakabe, K., Shinozaki, K. and Tran, L.P., 2014. Response of plants to water stress. Frontiers in Plant Science, 5, pp. 1-8. https://doi.org/10.3389/fpls.2014.00086

Oztürk, M., Turkyilmaz-Unal B., García?Caparrós, P., Khursheed, A., Gul, A. and Hasanuzzama, M., 2020. Osmoregulation and its actions during the drought stress in plants. Physiologia Plantarum. 172, pp. 1321–1335. https://doi.org/10.1111/ppl.13297

Raja, V., Qadir, S.U., Alyemeni, M.N. and Ahmad, P., 2020. Impact of drought and heat stress individually and in combination on physio-biochemical parameters, antioxidant responses, and gene expression in Solanum lycopersicum. 3 Biotech, 10, pp. 1-18. https://doi.org/10.1007/s13205-020-02206-4

Sadigov, R., 2022. Rapid growth of the world population and its socioeconomic results. The Scientific World Journal, pp. 1-8. https://doi.org/10.1155/2022/8110229

Santos, D.L., Coelho, E.F., Cunha, F.F.D., Donato, S.L.R., Bernado, W.D.P., Rodriguez, W.P. and Campostrini, E., 2021. Partial root-zone drying in field-grown papaya: Gas exchange, yield, and water use efficiency. Agricultural Water Management, 243, pp.1-11. https://doi.org/10.1016/j.agwat.2020.106421

Scalisi, A., O’Connell, M. G., Stefanelli, D. and lo Bianco, R., 2019. Fruit and Leaf Sensing for Continuous Detection of Nectarine Water Status. Frontiers in Plant Science, 10, pp. 1-17. https://doi.org/10.3389/fpls.2019.00805

Schmeier, S. (20 de marzo de 2022). [Entrevistado por N. M. Neil King]. https://p.dw.com/p/492Hb

Servicio de Información Agroalimentaria y Pesquera (SIAP), 2022. Anuario estadístico de la producción agrícola. Secretaria de Agricultura y Desarrollo Rural. https://nube.siap.gob.mx/cierreagricola/ (Consultado el 20 de Mayo 2022).

Shiade, S.R.G., Zand-Silakhoor, A., Fathi, A., Rahimi, R., Minkina, T., Rajput, V.D., Zulfiqar, U. and Chaudhary, T., 2024. Plant Metabolites and Signaling Pathways in Response to Biotic and Abiotic Stresses: Exploring Bio stimulant Applications. Plant Stress, 12, p.100454. https://doi.org/10.1016/j.stress.2024.100454

Stagno, F., Brambilla, M., Roccuzzo, G. and Assirelli, A., 2024. Water Use Efficiency in a Deficit-Irrigated Orange Orchard. Horticulturae, 10(5), p.498. https://doi.org/10.3390/horticulturae10050498

The Intergovernmental Panel on Climate Change (IPCC), 2022. Climate change widespread, rapid, and intensifying. Ginebra. https://www.ipcc.ch/2021/08/09/ar6-wg1-20210809-pr/ (Consultado el 15 de junio de 2022).

The World Bank. Water in Agriculture. The World Bank Group. Washington D. C. https://www.worldbank.org/en/topic/water-in-agriculture#1 (Consultado el 15 Marzo de 2022).

Wu, P., Wang, Y., Shao, J., Yu, H., Zhao, Z., Li, L., Gao, P., Li, Y., Liu, S., Gao, C., Guan, X., Wen, P., and Wang, T., 2024. Enhancing productivity while reducing water footprint and groundwater depletion: Optimizing irrigation strategies in a wheat-soybean planting system. Field Crops Research, 309, p.09331. https://doi.org/10.1016/j.fcr.2024.109331

Zapata-García, S., Temnani, A., Berrios, P., Pérez-López, R.D., Monllor, C., and Pérez-Pastor, A. 2024. Mejora de la productividad del agua de riego mediante déficit hídrico y bioestimulación en pimiento en condiciones de invernadero. In: EGU General Assembly Conference Abstracts, p. 22334.




URN: http://www.revista.ccba.uady.mx/urn:ISSN:1870-0462-tsaes.v28i1.53063

DOI: http://dx.doi.org/10.56369/tsaes.5306



Copyright (c) 2025 Carlos Trejo

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.