DECOMPOSITION AND NITROGEN RELEASE OF SUGAR CANE (Saccharum officinarum L.) RESIDUES COMBINED WITH THE FOLIAGE OF LOCAL PLANTS

Fernando Casanova-Lugo, Armando Escobedo-Cabrera, Benito Dzib-Castillo, Alberto Cabañas-Gallardo, Pablo Jesus Ramírez-Barajas, Elda Carolina Yam-Chalé, Luis Alberto Lara-Pérez

Abstract


Background: Green post-harvest sugarcane residues (Saccharum officinarum) present low rates of decomposition and N release in the short term when integrated into the production system. Combining S. officinarum residues with the foliage of local plants rich in nitrogen could be an alternative to accelerate the decomposition process of residues with a positive impact on soil conservation. Objective: To evaluate and compare the decomposition patterns and potential release of N to the soil of the residues of S. officinarum variety MEX 69-290, with the addition of different foliage such as Clitoria ternatea, Leucaena leucocephala and Tithonia diversifolia, in southern Quintana Roo. Methodology: The treatments evaluated were the following: Clitoria + MEX 69-290, Leucaena + MEX 69-290, Tithonia + MEX 69-290, and MEX 69-290 (control). The materials were placed in decomposition bags and incubated on the ground in four periods (15, 30, 60 and 120 days), in a completely randomized design. The contents of dry matter, nitrogen and lignin were determined for the initial and remaining material in each period. Results: With the integration of local plants, a significant increase in the percentage of decomposition and release of N was obtained. After 120 days of evaluation, the decomposition values were 71.3, 50.4, 48.1 and 33.5%, for the Tithonia + MEX 69-290, Clitoria + MEX 69-290, Leucaena + MEX 69-290, and MEX 69-290 control, respectively. Likewise, the potential N release values were 98.2, 95.3, 92.9 and 58.7%, for Tithonia + MEX 69-290, Leucaena + MEX 69-290, Clitoria + MEX 69-290, and MEX 69-290 control. The Tithonia + MEX 69-290 treatment had the highest relative decomposition rate (0.009 g g-1 day-1) and a high potential N release rate (0.053 g g-1 day-1), compared to the other treatments. Implications: The integration of N-rich plants can increase the decomposition and release of N from sugarcane residues, with potential in plant assimilation from the first crop cycle, reduce the application of nitrogen fertilizer and increase sugarcane yields. in the region. Conclusion: The combination of S. officinarum residues with foliage of local plants, particularly T. diversifolia, could be considered a viable strategy to accelerate the decomposition process and release of N in residues on the edaphoclimatic conditions of southern Quintana Roo.

Keywords


Clitoria ternatea, Leucaena leucocephala, MEX 69-290, Tithonia diversifolia, vegetable additives.

Full Text:

PDF

References


Aguilar-Rivera, N., Galindo-Mendoza, G., Fortanelli-Martínez, J. and Contreras-Servín, C., 2011. Factores de competitividad de la agroindustria de la caña de azúcar en México. Región y sociedad, 23(52), pp. 261-297. https://doi.org/10.22198/rys.2011.52.a188

Aguilar-Rivera, N., Rodríguez L, D. A., Enríquez R, V., Castillo M, A. and Herrera S. A., 2012. The Mexican sugarcane industry: overview, constraints, current status and long-term trends. Sugar Tech, 14, pp. 207-222. https://doi.org/10.1007/s12355-012-0151-3

Aguilar-Rivera, N., Algara-Siller, M., Olvera-Vargas, L. A., and Michel-Cuello, C., 2018. Land management in Mexican sugarcane crop fields. Land Use Policy, 78, pp. 763-780. https://doi.org/10.1016/j.landusepol.2018.07.034

AOAC, 2000. Official methods of analysis of AOAC international. AOAC International, Rockville.

Cabañas-Gallardo, A., 2021. Descomposición de hojas senescentes de tres especies leñosas con potencial silvopastoril en México. Tesis de Maestría en Ciencias en Agroecosistemas Sostenibles. Instituto Tecnológico de la Zona Maya, Quintana Roo, México.

Campos, L.H.F., 2010. Straw management systems influence biomass accumulation and yield of sugarcane crop (var. RB855453). Acta Scientiarum. Agronomy, 32 (2), pp. 345–350. https://doi.org/10.4025/actasciagron.v32i2.3703

Carvalho, J.L.N., Nogueirol, R.C., Menandro, L.M.S., Bordonal, R.D.O., Borges, C.D., Cantarella, H. and Franco, H.C. J., 2017. Agronomic and environmental implications of sugarcane straw removal: a major review. GCB Bioenergy, 9(7), pp. 1181-1195. https://doi.org/10.1111/gcbb.12410

Ceccon, E., Sanchez, I. and Powers, J.S., 2015. Biological potential of four indigenous tree species from seasonally dry tropical forest for soil restoration. Agroforestry Systems, 89, pp. 445-467. https://doi.org/10.1007/s10457-014-9782-6

Criado, A. A., Fernandez de Ullivarri, J., Medina, M.M., Tortora, M.L., Leggio-Neme, M.F., Romero, E.R. and Digonzelli, P.A., 2022. Descomposición del residuo agrícola de cosecha (RAC) en un sistema productivo sustentable en el cultivo de caña de azúcar en Tucumán - Argentina. Revista Industrial y Agrícola de Tucumán, 99, pp. 1-12.

de Andrade, M.A., Maxwell, S.L. and Watson, J. E., 2020. Renewed threats to Brazilian biodiversity from sugarcane. Frontiers in Ecology and the Environment, 18(4), pp. 178-180. https://doi.org/10.1002/fee.2196

de Aquino, G.S., de Conti Medina, C., da Costa, D. C., Shahab, M. and Santiago, A. D., 2017. Sugarcane straw management and its impact on production and development of ratoons. Industrial Crops and Products, 102, pp. 58-64. https://doi.org/10.1016/j.indcrop.2017.03.018

Degefa, S. and Saito, O., 2017. Assessing the impacts of large-scale agro-industrial sugarcane production on biodiversity: A case study of Wonji Shoa Sugar Estate, Ethiopia. Agriculture, 7(12), pp. 99. https://doi.org/10.3390/agriculture7120099

Dietrich, G., Sauvadet M., Recous, S., Redin, M., Pfeifer, I.C., Garlet, C., Bazzo, M.H. and Giacomini, S.J., 2017. Sugarcane mulch C and N dynamics during decomposition under different rates of trash removal. Agriculture, Ecosystems and Environment, 243, pp. 123-131. https://doi.org/10.1016/j.agee.2017.04.013

Dinardo-Miranda, L.L. and Fracasso, J.V., 2013. Sugarcane straw and the populations of pests and nematodes. Scientia Agricola, 70, pp. 305-310. https://doi.org/10.1590/S0103-90162013000500012

Ellis, E.A., Navarro-Martínez, A., García-Ortega, M., Hernández-Gómez, I.U. and Chacón Castillo, D., 2020. Forest cover dynamics in the Selva Maya of Central and Southern Quintana Roo, Mexico: deforestation or degradation? Journal of Land Use Science, 15(1), pp. 25-51. https://doi.org/10.1080/1747423X.2020.1732489

Fortes, C., Trivelin P.C.O. and Vitti A.C., 2012. Long-term decomposition of sugarcane harvest residues in Sao Paulo state, Brazil. Biomass and Bioenergy, 42, pp. 189–198. https://doi.org/10.1016/j.biombioe.2012.03.011

Franco, A.L., Bartz, M. L., Cherubin, M. R., Baretta, D., Cerri, C. E., Feigl, B. J., Wall, D.H., Davies, C.A. and Cerri, C. C., 2016. Loss of soil (macro) fauna due to the expansion of Brazilian sugarcane acreage. Science of the Total Environment, 563, pp. 160-168. https://doi.org/10.1016/j.scitotenv.2016.04.116

Gallego-Castro, L.A., Mahecha-Ledesma, L. and Angulo-Arizala, J., 2017. Calidad nutricional de Tithonia diversifolia Hemsl. A Gray bajo tres sistemas de siembra en el trópico alto. Agronomía Mesoamericana, 28(1), pp. 213-222. http://dx.doi.org/10.15517/am.v28i1.21671

García, E., 1988. Modificaciones al sistema de clasificación climática de Köppen para adaptarlos a las condiciones de la República Mexicana. México: Universidad Nacional Autónoma de México.

García-Ferrer, L., Bolaños-Aguilar, E.D., Lagunes-Espinoza, L.C., Ramos-Juárez, J. and Osorio-Arce, M.M., 2016. Concentración de compuestos fenólicos en fabáceas forrajeras tropicales en edad diferente del rebrote. Agrociencia, 50, pp. 429-440.

Gava, G.J.C., Trivelin P.C.O., Vitti A.C. and Oliveira M.W., 2005. Urea and sugarcane trash nitrogen balance in a soil-sugarcane crop system. Pesquisa Agropecuaria Brasileira, 40, pp. 689–695. https://doi.org/10.1590/S0100-204X2005000700010

Haase, K. and Wantzen, K.M., 2008. Analysis and decomposition of condensed tannins in tree leaves. Environmental Chemistry Letters, 6(2), pp. 71–75. https://doi.org/10.1007/s10311-008-0140-7

Hemwong, S., Cadisch, G., Toomsan, B., Limpinuntana, V., Vityakon, P. and Patanothai, A., 2008. Dynamics of residue decomposition and N2 fixation of grain legumes upon sugarcane residue retention as an alternative to burning. Soil and Tillage Research, 99(1), pp. 84-97. https://doi.org/10.1016/j.still.2008.01.003

Hernández, R.S., López, D.J.P., Olan, J.J.O. and Noverola, U.L. 2003. Effect of harvest mulch on the physical and chemistry properties of a vertic soil and sugarcane (Saccharum officinarum L.) yields in Tabasco, Mexico. Interciencia, 28(7), pp. 404-407.

Hernández, M., Simón, L. and Sánchez, S., 2005. Rendimiento forrajero de la caña de azúcar asociada a leguminosas arbóreas. II. Biomasa comestible total. Pastos y Forrajes, 28(2), pp. 149-153.

Herrera, A.M., de Mello A.C.L., de Oliveira Apolinário, V.X., Júnior, J.C.B.D., da Silva V.J., dos Santos M.V.F., and da Cunha, M.V., 2020. Decomposition of senescent leaves of signalgrass (Urochloa decumbens Stapf. R. Webster) and arboreal legumes in silvopastoral systems. Agroforestry Systems, 94(6), pp. 2213-2224. https://doi.org/10.1007/s10457-020-00542-1

IUSS Working Group WRB, 2022. World Reference Base for Soil Resources. International soil classification system for naming soils and creating legends for soil maps. 4th edition. Vienna, Austria: International Union of Soil Sciences (IUSS).

Kee Kwong, K.N., Deville, J., Cavalot, P.C. and Riviere, V., 1987. Value of cane trash in nitrogen nutrition of sugarcane. Plant and Soil, 102, pp. 79-83. https://doi.org/10.1007/BF02370904

Kuiters, A.T., 1990. Role of phenolic substances from decomposing forest litter in plant-soil interactions. Acta Botanica Neerlandica, 39(4), pp. 329-348. https://doi.org/10.1111/j.1438-8677.1990.tb01412.x

Kumar, B.M., 2008. Litter dynamics in plantation and agroforestry systems of the tropics - a review of observations and methods. In: D.R. Batish, R.K. Kohli, S. Jose, H.P. Singh, eds. Ecological basis of agroforestry. Boca Raton (USA): CRC Press, pp. 181–216.

Lezcano, Y., Soca, M., Sánchez, L.M., Ojeda, F., Olivera, Y., Fontes, D., Montejo, I.L. and Santana, H., 2012. Caracterización cualitativa del contenido de metabolitos secundarios en la fracción comestible de Tithonia diversifolia (Hemsl.) A. Gray. Pastos y Forrajes, 35(3), pp. 283-291.

Lisboa, I.P., Cherubin, M.R., de Lima, R.P., Gmach, M.R., Wienhold, B.J., Schmer, M.R., Jin, V.L., Junior, E.F.F., Guerra, H.P., Cerri, C.C. and Cerri, C.E., 2019. Sugarcane straw blanket management effects on plant growth, development, and yield in Southeastern Brazil. Crop Science, 59(4), pp. 1732-1744. https://doi.org/10.2135/cropsci2018.07.0468

Marin, F.R., Thorburn, P.J., da Costa, L.G. and Otto, R., 2014. Simulating long-term effects of trash management on sugarcane yield for Brazilian cropping systems. Sugar Tech, 16, pp. 164-173. https://doi.org/10.1007/s12355-013-0265-2

Matheus, J., 2004. Evaluación agronómica del uso de compost de residuos de la industria azucarera (biofertilizante) en el cultivo de maíz (Zea mays L.). Bioagro, 16(3), pp. 219-224.

Meier, E.A., Thorburn P.J., Wegener M.K. and Basford K.E., 2006. The availability of nitrogen from sugarcane trash on contrasting soils in the wet tropics of North Queensland. Nutrient Cycling in Agroecosystems, 75, pp. 101–114. https://doi.org/10.1007/s10705-006-9015-0

Mitchell, R.D.J., Thorburn P.J. and Larsen P., 2000. Quantifying the loss of nutrients from the immediate area when sugarcane residues are burnt. Proceedings of the Australian Society of Sugar Cane Technologists, 22, Queensland, Australia. PK Editorial Services Pty Ltd, Cairns, pp. 206–211.

Mora, O., 2015. Propuesta de alternativas hacia una producción sostenible de la caña de azúcar en la zona azucarera de Colombia, Revista Agricultura Orgánica, http://www.controlbiologico.com/produccion-de-cana.htm

Moriones-Ruiz, M.L. and Montes-Rojas, C., 2017. Aporte de Tithonia diversifolia en abonos orgánicos: efecto en producción y suelo en cauca, Colombia. Biotecnología en el Sector Agropecuario y Agroindustrial, 15(2), pp. 101–111. https://doi.org/10.18684/BSAA(15)101-111.

Múgica-Álvarez, V., Santiago-de la Rosa, N., Figueroa-Lara, J., Flores-Rodríguez, J., Torres-Rodríguez, M., and Magaña-Reyes, M., 2015. Emissions of PAHs derived from sugarcane burning and processing in Chiapas and Morelos México. Science of the Total Environment, 527, pp. 474-482. https://doi.org/10.1016/j.scitotenv.2015.04.089

Múgica-Álvarez, V., Hernández-Rosas, F., Magaña-Reyes, M., Herrera-Murillo, J., Santiago-De La Rosa, N., Gutiérrez-Arzaluz, M., Figueroa-Lara, J. and González-Cardoso, G., 2018. Sugarcane burning emissions: Characterization and emission factors. Atmospheric Environment, 193, pp. 262-272. https://doi.org/10.1016/j.atmosenv.2018.09.013

OCDE/FAO, 2020. OCDE-FAO Perspectivas Agrícolas, Estadísticas de la OCDE sobre agricultura (base de datos), http://dx.doi.org/10.1787/agr-outl-data-en.

Oliveira, M.W., Trivelin P.C.O., Kingston G., Barbosa M.H.P and Vitti A.C., 2002. Decomposition and release of nutrients from sugarcane trash in two agricultural environments in Brazil. Proceedings of the Australian Society of Sugar Cane Techonologists, 24, Queensland, Australia. PK Editorial Services Pty Ltd, Cairns, pp. 290–296.

Oliveira, M.W., Trivelin P.C.O., Penatti C.P. and De Cassia P. M., 1999. Decomposic~ao e liberac~ao de nutrientes da palhada de cana-de-acucar em campo. Pesquisa Agropecuaria Brasileira, 34, pp. 2359–2362. https://doi.org/10.1590/S0100-204X1999001200024

Oliveira, M.W., Barbosa, M.H.P., Mendes, L.C. and Damasceno, C.M., 2003. Dry matter and nutrients in straw ten varieties of sugarcane. STAB 21, (3), pp. 30–31.

Olson, J.S., 1963. Energy storage and the balance of producers and decomposers in ecological systems. Ecology, 44, pp. 322-331. https://doi.org/10.2307/1932179

Parrotta, J.A., 1999. Productivity, nutrient cycling and succession in single- and mixed species plantations of Casuarina equisetifolia, Eucalyptus robusta and Leucaena leucocephala in Puerto Rico. Forest Ecology and Management. 124, pp. 45–77. https://doi.org/10.1016/S0378-1127(99)00049-3

Partey, S.T., Quashie-Sam, S.J., Thevathasan, N.V. and Gordon, A.M., 2011. Decomposition and nutrient release patterns of the leaf biomass of the wild sunflower (Tithonia diversifolia): a comparative study with four leguminous agroforestry species. Agroforestry Systems, 81, pp. 123-134. https://doi.org/10.1007/s10457-010-9360-5

Petit-Aldana, J., Uribe-Valle, G., Casanova-Lugo, F., Solorio-Sánchez, J., and Ramírez-Avilés, L., 2012. Descomposición y liberación de nitrógeno y materia orgánica en hojas de Leucaena leucocephala (Lam.) de Wit, Guazuma ulmifolia Lam. y Moringa oleifera Lam. en un banco mixto de forraje. Revista Chapingo Serie Ciencias Forestales y del Ambiente, 18(1), pp. 5-25. https://doi.org/10.5154/r.rchscfa.2011.03.025

Robertson, F.A. and Thorburn, P.J., 2007. Decomposition of sugarcane harvest residue in different climatic zones. Soil Research, 45(1), pp. 1-11. https://doi.org/10.1071/SR06079

Robinson, N., Vogt, J., Lakshmanan, P. and Schmidt, S., 2013. Nitrogen physiology of sugarcane. In: P.H. Moore and F.C. Botha, eds. Sugarcane: Physiology, Biochemistry, and Functional Biology. New York: Wiley & Sons. pp. 169-196.

SADER, 2021. https://www.gob.mx/agricultura/es/articulos/cana-de-azucar-una-dulce-produccion237168#:~:text=Los%20principales%20estados%20productores%20son,mil%20hect%C3%A1reas%20del%20territorio%20mexicano (consultado: 16/01/2021).

Salem, H. B., Nefzaoui, A. and Abdouli, H., 2000. Palatability of shrubs and fodder trees measured on sheep and dromedaries: Methodological approach. Animal Feed Science and Technology, 46, pp. 143. https://doi.org/10.1016/0377-8401(94)90072-8

Sánchez, S., 2008. Acumulación y descomposición de la hojarasca en un pastizal de Panicum maximum Jacq. y en un sistema silvopastoril asociado de P. maximum y Leucaena leucocephala (Lam.) de Wit. Zootecnia Tropical, 26 (3), pp. 269-273.

Sarker, T.C., Azam, S.M.G.G. and Bonanomi, G., 2017. Recent advances in sugarcane industry solid by-products valorization. Waste and Biomass Valorization, 8, pp. 241-266. https://doi.org/10.1007/s12649-016-9665-3

SAS, 2004. Statiscal Analysis System, Users. SAS Institute, Cary N.C.

Segura-Rosel, A., Casanova-Lugo, F., Solorio-Sánchez, F.J. and Chay-Canul, A.J., 2012. Asociación de especies leñosas en bancos de forraje: influencia sobre el aporte de hojarasca, descomposición y liberación de nitrógeno. Tropical and Subtropical Agroecosystems, 15, pp. 61-69.

Sentíes-Herrera, H.E., Trejo-Téllez, L.I. and Gómez-Merino, F.C., 2017. The Mexican sugarcane production system: History, current status, and new trends. In: R. Murphy, ed. Sugarcane: Production Systems, Uses and Economic Importance. New York, USA: Nova Publishers, pp. 39-71.

Showler, A.T., 2023. Mulched and soil-incorporated sugarcane greenchop residue and compost: effects on selected soil components, sugarcane nutrients, Mexican rice borer injury, and yield. Environmental Systems Research, 12, 4. https://doi.org/10.1186/s40068-023-00284-w

Steffan-Dewenter, I., Kessler, M., Barkmann, J., Bos, M. M., Buchori, D., Erasmi, S., Faust, H., Gerold, G., Glenk, K., Robbert G.S., Guhardja, E., Harteveld, M., Hertel, D., Höhn, P., Kappas, M., Köhler, S., Leuschner, C., Maertens, M., Marggraf, R., Migge-Kleian, S. Mogea, J., Pitopang, R., Schaefer, M., Schwarze, S., Sporn, S.G., Steingrebe, A., Tjitrosoedirdjo, S.S., Tjitrosoemito, S., Twele, A., Weber, R., Woltmann, L., Zeller, M. and Tscharntke, T., 2007. Tradeoffs between income, biodiversity, and ecosystem functioning during tropical rainforest conversion and agroforestry intensification. Proceedings of the National Academy of Sciences, 104(12), pp. 4973-4978. https://www.jstor.org/stable/26269360

Steel, R.G.D. and Torrie, J.H., 1980. Principles and procedures of statistics. A biometrical approach, 2nd Edition, New York: McGraw-Hill Book Company.

Teklay, T., 2007. Decomposition and nutrient release from pruning residues of two indigenous agroforestry species during the wet and dry seasons. Nutrient Cycling in Agroecosystems, 77, pp. 115–126. https://doi.org/10.1007/s10705-006-9048-4

Valachovic, Y.S., Caldwell, B.A., Cromack, K., and Griffiths, R.P., 2004. Leaf litter chemistry controls on decomposition of Pacific Northwest trees and woody shrubs. Canadian Journal of Forest Research, 34, pp. 2131–2147. https://doi.org/10.1139/x04-089

Van Soest, P.J., 1973. Collaborative study of acid-detergent fiber and lignin. JAOAC, 56 pp.781–784.

Vargas, V.P., Cantarella, H., Martins, A.A., Soares, J.R., do Carmo, J.B. and de Andrade, C.A., 2014. Sugarcane crop residue increases N2O and CO2 emissions under high soil moisture conditions. Sugar Tech, 16, pp. 174-179. https://doi.org/10.1007/s12355-013-0271-4

Vitti, A.C., Franco, H.C.J., Trivelin, P.C.O., Ferreira, D.A., Otto, R., Fortes, C. and Faroni, C.E., 2011. Nitrogênio proveniente da adubação nitrogenada e de resíduos culturais na nutrição da cana-planta. Pesquisa Agropecuaria Brasileira, 46, pp. 287-293. https://doi.org/10.1590/S0100-204X2011000300009

Wider, R.K. and Lang, G.E., 1982. A critique of the analytical methods used in examining decomposition data obtained from litter bags. Ecology, 63 pp.,1636–1642. https://doi.org/10.2307/1940104




URN: http://www.revista.ccba.uady.mx/urn:ISSN:1870-0462-tsaes.v27i2.52281

DOI: http://dx.doi.org/10.56369/tsaes.5228



Copyright (c) 2024 Pablo Jesus Ramírez-Barajas, Armando Escobedo-Cabrera, Benito Dzib-Castillo, Alberto Cabañas-Gallardo, Elda Carolina Yam-Chalé, Luis Alberto Lara-Pérez, Fernando Casanova-Lugo

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.