EXPLORING THE SOIL-ASSOCIATED BACTERIAL MICROBIOME OF COFFEE PLANTATIONS IN DIFFERENT REGIONS OF COLOMBIA: A METABARCODING APPROACH

Lorena Jacqueline Gómez-Godínez, Víctor Ochoa, Valeria Faggioli, Marco Cristancho

Abstract


Introduction: Coffee is one of the leading tropical crops produced worldwide. Colombia ranks third in coffee production in the world. Microorganisms associated with coffee plants can have many biotechnological applications, such as plant growth promotion and biological control. Objective: To describe the bacteria present in the soil associated with coffee cultivation. This was done using a bulk sequencing or 16S rRNA metabarcoding approach. Methodology: Soil samples were collected to analyze their microbiome from three different departments of Colombia (Cauca, Risaralda and Magdalena). The plants were of different ages, and the crop management was different (conventional and organic). Subsequently, an analysis was carried out using Qiime2 to describe the communities associated with coffee cultivation and soil chemical properties. Results: Some important genera were identified, such as Janthinobacterium, Bacillus, Actinomadura and Actinoallomurus. These genera can be used as plant growth promoters, organic matter transformers, producers of antibiotics and metabolites with potential biotechnological applications. Implications: The study presented in this manuscript describes the communities associated with the soil in coffee cultivation. However, a much more complex approach could be through metagenomics, where the bacterial communities and the functions of; however, this vision is up to ten times higher in cost. Conclusion: Through the results obtained, it is concluded that the studies carried out through metabarcoding help to understand the composition of the microorganisms associated with coffee and, with this, try to elucidate the functions of the associated microorganisms.

Keywords


Metabarcoding; coffee; uncultured bacteria species.

Full Text:

PDF

References


Abdelaal, K., AlKahtani, M., Attia, K., Hafez, Y., Király, L., & Künstler, A. 2021. The role of plant growth-promoting bacteria in alleviating the adverse effects of drought on plants. Biology, 10(6), 520. https://doi.org/10.3390/biology10060520

Addison, S. L., Foote, S. M., Reid, N. M., and Lloyd-Jones, G. 2007. Novosphingobium nitrogenifigens sp. nov., a polyhydroxyalkanoate-accumulating diazotroph isolated from a New Zealand pulp and paper wastewater. International Journal of Systematic and Evolutionary Microbiology, 57(11), pp. 2467–2471. https://doi.org/10.1099/IJS.0.64627-0

Asad, S., Priyashantha, A. K. H., Tibpromma, S., Luo, Y., Zhang, J., Fan, Z., ... & Karunarathna, S. C. 2023. Coffee-associated endophytes: Plant growth promotion and crop protection. Biology, 12(7), 911. https://doi.org/10.3390/biology12070911

Ba?maga, M., Wyszkowska, J., and Kucharski, J. 2021. Bacterial diversity and enzymatic activity in a soil recently treated with tebuconazole. Ecological Indicators, 123, 107373. https://doi.org/10.1016/J.ECOLIND.2021.107373

Beretta, A. N., Silbermann, A. V., Paladino, L., Torres, D., Bassahun, D., Musselli, R., & García-Lamohte, A. 2014. Análisis de textura del suelo con hidrómetro: Modificaciones al método de Bouyoucus. Ciencia e investigación agraria, 41(2), 263-271. http://dx.doi.org/10.4067/S0718-16202014000200013.

Bergmann, G. T., Bates, S. T., Eilers, K. G., Lauber, C. L., Caporaso, J. G., Walters, W. A., Knight, R., and Fierer, N. 2011. The under-recognized dominance of Verrucomicrobia in soil bacterial communities. Soil Biology and Biochemistry, 43(7), 1450. https://doi.org/10.1016/J.SOILBIO.2011.03.012

Bertola, M., Ferrarini, A., and Visioli, G. 2021. Improvement of Soil Microbial Diversity through Sustainable Agricultural Practices and Its Evaluation by -Omics Approaches: A Perspective for the Environment, Food Quality and Human Safety. Microorganisms 2021, Vol. 9, pp. 1400, 9(7), 1400. https://doi.org/10.3390/MICROORGANISMS9071400

Bjerketorp, J., Levenfors, J. J., Nord, C., Guss, B., Öberg, B., and Broberg, A. 2021. Selective Isolation of Multidrug-Resistant Pedobacter spp., Producers of Novel Antibacterial Peptides. Frontiers in Microbiology, 12, 366. https://doi.org/10.3389/FMICB.2021.642829/BIBTEX

Blackall, L. L., Seviour, E. M., Bradford, D., Rossetti, S., Tandoi, V., and Seviour, R. J. 2000. “Candidatus Nostocoida limicola”, a filamentous bacterium from activated sludge. International Journal of Systematic and Evolutionary Microbiology, 50 Pt 2(2), pp. 703–709. https://doi.org/10.1099/00207713-50-2-703

Boada, E., Santos-Clotas, E., Bertran, S., Cabrera-Codony, A., Martín, M. J., Bañeras, L., and Gich, F. 2020. Potential use of Methylibium sp. as a biodegradation tool in organosilicon and volatile compounds removal for biogas upgrading. Chemosphere, 240, 124908. https://doi.org/10.1016/J.CHEMOSPHERE.2019.124908

Bodor, A., Bounedjoum, N., Vincze, G. E., Erdeiné Kis, Á., Laczi, K., Bende, G., Szilágyi, Á., Kovács, T., Perei, K., and Rákhely, G. 2020. Challenges of unculturable bacteria: environmental perspectives. Reviews in Environmental Science and Bio/Technology 2020 19:1, 19(1), pp. 1–22. https://doi.org/10.1007/S11157-020-09522-4

Bonatelli, M. L., Lacerda-Júnior, G. V., dos Reis Junior, F. B., Fernandes-Júnior, P. I., Melo, I. S., and Quecine, M. C. 2021. Beneficial Plant-Associated Microorganisms From Semiarid Regions and Seasonally Dry Environments: A Review. Frontiers in Microbiology, 11, 3331. https://doi.org/10.3389/FMICB.2020.553223/XML/NLM

Brangarí, A. C., Lyonnard, B., & Rousk, J. (2022). Soil depth and tillage can characterize the soil microbial responses to drying-rewetting. Soil Biology and Biochemistry, 173, 108806.

Callahan, B. J., McMurdie, P. J., Rosen, M. J., Han, A. W., Johnson, A. J. A., and Holmes, S. P. 2016. DADA2: High resolution sample inference from Illumina amplicon data. Nature Methods, 13(7), 581. https://doi.org/10.1038/NMETH.3869

Chhetri, G., Kim, I., Kim, J., So, Y., and Seo, T. (2022). Chryseobacterium tagetis sp. nov., a plant growth promoting bacterium with an antimicrobial activity isolated from the roots of medicinal plant (Tagetes patula). The Journal of Antibiotics 2022 75:6, 75(6), pp. 312–320. https://doi.org/10.1038/s41429-022-00525-7

Chou, M. Y., Shrestha, S., Rioux, R., and Kocha, P. 2021. Hyperlocal Variation in Soil Iron and the Rhizosphere Bacterial Community Determines Dollar Spot Development in Amenity Turfgrass. Applied and Environmental Microbiology, 87(10), pp. 1–20. https://doi.org/10.1128/AEM.00149-21

Darfis, I., & Putri, E. L. 2021. Performance of some soil physical properties of arabica coffee plantation in solok regency. In IOP Conference Series: Earth and Environmental Science (Vol. 741, No. 1, p. 012028). IOP Publishing.

Davis, A. P., Govaerts, R., Bridson, D. M., and Stoffelen, P. 2006. An annotated taxonomic conspectus of the genus Coffea (Rubiaceae). Botanical Journal of the Linnean Society, 152(4), pp. 465–512. https://doi.org/10.1111/J.1095-8339.2006.00584.X

Duong, B., Marraccini, P., Maeght, J. L., Vaast, P., Lebrun, M., & Duponnois, R. 2020. Coffee microbiota and its potential use in sustainable crop management. A review. Frontiers in Sustainable Food Systems, 4, 607935.

Elwell, C., Mirrashidi, K., and Engel, J. 2016. Chlamydia cell biology and pathogenesis. Nature Reviews. Microbiology, 14(6), 385. https://doi.org/10.1038/NRMICRO.2016.30

Gao, S., Zhang, Y., Jiang, N., Luo, L., Li, Q. X., and Li, J. 2015. Novosphingobium fluoreni sp. nov., isolated from rice seeds. International Journal of Systematic and Evolutionary Microbiology, 65(5), pp. 1409–1414. https://doi.org/10.1099/IJS.0.000111/CITE/REFWORKS

Glick, B. R. 2012. Plant growth-promoting bacteria: mechanisms and applications. Scientifica. https://doi.org/10.6064/2012/963401

Gobbetti, M., and Rizzello, C. G. 2014. Arthrobacter. Encyclopedia of Food Microbiology: Second Edition, pp. 69–76. https://doi.org/10.1016/B978-0-12-384730-0.00009-4

Gómez-Godínez, L. J., Aguirre-Noyola, J. L., Martínez-Romero, E., Arteaga-Garibay, R. I., Ireta-Moreno, J., & Ruvalcaba-Gómez, J. M. 2023. A Look at Plant-Growth-Promoting Bacteria. Plants, 12(8), 1668. https://doi.org/10.1590/S1415-475738420150053

Guo, L., Zheng, S., Cao, C., & Li, C. 2016. Tillage practices and straw-returning methods affect topsoil bacterial community and organic C under a rice-wheat cropping system in central China. Scientific Reports, 6(1), 33155. https://doi.org/10.1038/srep33155

Hatten, J., & Liles, G. (2019). A ‘healthy’balance–The role of physical and chemical properties in maintaining forest soil function in a changing world. In Developments in soil science (Vol. 36, pp. 373-396). Elsevier.

Hernández, M., Dumont, M. G., Yuan, Q., and Conrad, R. 2015. Different bacterial populations associated with the roots and rhizosphere of rice incorporate plant-derived carbon. Applied and Environmental Microbiology, 81(6), pp. 2244–2253. https://doi.org/10.1128/aem.03209-14/suppl_file/zam999116128so1.pdf

Hu, J., Zhao, Y., Yao, X., Wang, J., Zheng, P., Xi, C., and Hu, B. 2021. Dominance of comammox Nitrospira in soil nitrification. Science of The Total Environment, 780, 146558. https://doi.org/10.1016/J.SCITOTENV.2021.146558

Junior, D. B., Guarçoni, R. C., da Silva, M. D. C. S., Veloso, T. G. R., Kasuya, M. C. M., da Silva Oliveira, E. C., ... & Pereira, L. L. 2021. Microbial fermentation affects sensorial, chemical, and microbial profile of coffee under carbonic maceration. Food Chemistry, 342, 128296. https://doi.org/10.1016/j.foodchem.2020.128296

Kalra, Yash P. 1995. Determination of pH of soils by different methods: collaborative study. Journal of AOAC International 78, 2: 310-324. https://doi.org/10.1093/jaoac/78.2.310

Kämpfer, P., Dreyer, U., Neef, A., Dott, W., and Busse, H. J. 2003. Chryseobacterium defluvii sp. nov., isolated from wastewater. International Journal of Systematic and Evolutionary Microbiology, 53, pp. 93–97. https://doi.org/10.1099/IJS.0.02073-0

Kämpfer, P., Vaneechoutte, M., Lodders, N., De Baere, T., Avesani, V., Janssens, M., Busse, H. J., and Wauters, G. 2009. Description of Chryseobacterium anthropi sp. nov. to accommodate clinical isolates biochemically similar to Kaistella koreensis and Chryseobacterium haifense, proposal to reclassify Kaistella koreensis as Chryseobacterium koreense comb. nov. and emended description of the genus Chryseobacterium. International Journal of Systematic and Evolutionary Microbiology, 59(Pt 10), pp. 2421–2428. https://doi.org/10.1099/IJS.0.008250-0

Katsenios, N., Andreou, V., Sparangis, P., Djordjevic, N., Giannoglou, M., Chanioti, S., ... & Efthimiadou, A. 2022. Assessment of plant growth promoting bacteria strains on growth, yield and quality of sweet corn. Scientific Reports, 12(1), 11598. https://doi.org/10.1038/s41598-022-16044-2

Kejela, T., Thakkar, V. R., and Thakor, P. 2016. Bacillus species (BT42) isolated from Coffea arabica L. rhizosphere antagonizes Colletotrichum gloeosporioides and Fusarium oxysporum and also exhibits multiple plant growth promoting activity. BMC Microbiology, 16(1), pp. 1–13. https://doi.org/10.1186/S12866-016-0897-Y

Keren, R. "Boron. 1996. " Methods of Soil Analysis: Part 3 Chemical Methods 5 (1996): 603-626.

Kuffner, M., Puschenreiter, M., Wieshammer, G., Gorfer, M., and Sessitsch, A. 2008. Rhizosphere bacteria affect growth and metal uptake of heavy metal accumulating willows. Plant and Soil, 304(1–2), pp. 35–44. https://doi.org/10.1007/S11104-007-9517-9/FIGURES/2

Lahlali, R., Ezrari, S., Radouane, N., Kenfaoui, J., Esmaeel, Q., El Hamss, H., Belabess, Z., and Barka, E. A. 2022. Biological Control of Plant Pathogens: A Global Perspective. Microorganisms, 10(3). https://doi.org/10.3390/microorganisms10030596

Lian, T., Jin, J., Wang, G., Tang, C., Yu, Z., Li, Y., Liu, J., Zhang, S., and Liu, X. 2017. The fate of soybean residue-carbon links to changes of bacterial community composition in Mollisols differing in soil organic carbon. Soil Biology and Biochemistry, 109, pp. 50–58. https://doi.org/10.1016/j.soilbio.2017.01.026

Lin, C., & Coleman, N. T. 1960. The measurement of exchangeable aluminum in soils and clays. Soil Science Society of America Journal, 24(6), 444-446. https://doi.org/10.2136/sssaj1960.03615995002400060009x

Lladó, S., López-Mondéjar, R., and Baldrian, P. 2017. Forest Soil Bacteria: Diversity, Involvement in Ecosystem Processes, and Response to Global Change. Microbiology and Molecular Biology Reviews : MMBR, 81(2). https://doi.org/10.1128/MMBR.00063-16

Lopes, M. J. dos S., Dias-Filho, M. B., and Gurgel, E. S. C. 2021. Successful Plant Growth-Promoting Microbes: Inoculation Methods and Abiotic Factors. Frontiers in Sustainable Food Systems, 5, 48. https://doi.org/10.3389/FSUFS.2021.606454/XML/NLM

López Báez, W., Castro Mendoza, I., Salinas Cruz, E., Reynoso Santos, R., & López Martínez, J. 2016. Properties of soils coffee in the Biosphere Reserve El Triunfo, Chiapas, Mexico. Revista mexicana de ciencias agrícolas, 7(3), 607-618.

Mathew, R. P., Feng, Y., Githinji, L., Ankumah, R., & Balkcom, K. S. 2012. Impact of no-tillage and conventional tillage systems on soil microbial communities. Applied and Environmental Soil Science. https://doi.org/10.1155/2012/548620

Maurya, A., Kesharwani, L., & Mishra, M. K. (2018). Analysis of heavy metal in soil through atomic absorption spectroscopy for forensic consideration. Int. J. Res. Appl. Sci. Eng. Technol, 6(6), 1188-1192.

Miller, J. A., Kalyuzhnaya, M. G., Noyes, E., Lara, J. C., Lidstrom, M. E., and Chistoserdova, L. 2005. Labrys methylaminiphilus sp. nov., a novel facultatively methylotrophic bacterium from a freshwater lake sediment. International Journal of Systematic and Evolutionary Microbiology, 55(3), pp. 1247–1253. https://doi.org/10.1099/ijs.0.63409-0/cite/refworks

Mussatto, S. I., Machado, E. M. S., Martins, S., and Teixeira, J. A. 2011. Production, Composition, and Application of Coffee and Its Industrial Residues. Food and Bioprocess Technology, 4(5), pp. 661–672. https://doi.org/10.1007/S11947-011-0565-Z/FIGURES/4

Nakatsu, C. H., Hristova, K., Hanada, S., Meng, X. Y., Hanson, J. R., Scow, K. M., and Kamagata, Y. 2006. Methylibium petroleiphilum gen. nov., sp. nov., a novel methyl tert-butyl ether-degrading methylotroph of the Betaproteobacteria. International Journal of Systematic and Evolutionary Microbiology, 56(5), pp-. 983–989. https://doi.org/10.1099/ijs.0.63524-0/cite/refworks

Poria, V., D?biec-Andrzejewska, K., Fiodor, A., Lyzohub, M., Ajijah, N., Singh, S., & Pranaw, K. 2022. Plant Growth-Promoting Bacteria (PGPB) integrated phytotechnology: A sustainable approach for remediation of marginal lands. Frontiers in Plant Science, 13, 999866. https://doi.org/10.3389/fpls.2022.999866

Pozzi, R., Simone, M., Mazzetti, C., Maffioli, S., Monciardini, P., Cavaletti, L., Bamonte, R., Sosio, M., and Donadio, S. 2010. The genus Actinoallomurus and some of its metabolites. The Journal of Antibiotics 2011 64:1, 64(1), pp. 133–139. https://doi.org/10.1038/ja.2010.149

Pukall, R., Lapidus, A., Glavina Del Rio, T., Copeland, A., Tice, H., Cheng, J. F., Lucas, S., Chen, F., Nolan, M., Bruce, D., Goodwin, L., Pitluck, S., Mavromatis, K., Ivanova, N., Ovchinnikova, G., Pati, A., Chen, A., Palaniappan, K., Land, M., and Hugenholtz, P. 2010. Complete genome sequence of Conexibacter woesei type strain (ID131577T). Standards in Genomic Sciences, 2(2), 212. https://doi.org/10.4056/SIGS.751339

Rawat, S. R., Männistö, M. K., Bromberg, Y., & Häggblom, M. M. 2012. Comparative genomic and physiological analysis provides insights into the role of Acidobacteria in organic carbon utilization in Arctic tundra soils. FEMS microbiology ecology, 82(2), 341-355. https://doi.org/10.1111/j.1574-6941.2012.01381.x

Rincon-Florez, V. A., Carvalhais, L. C., and Schenk, P. M. 2013. Culture-Independent Molecular Tools for Soil and Rhizosphere Microbiology. Diversity 2013, Vol. 5, 5(3), pp. 581–612. https://doi.org/10.3390/D5030581

Salazar, S., Ochoa, A., & McCarthy, P. J. (2023). How the visit of pedologist Hans Jenny to Colombia (1946–1947) contributed to the theory of soil-forming factors. Geoderma, 437, 116575.

Sanford, R. A., Cole, J. R., and Tiedje, J. M. 2002. Characterization and Description of Anaeromyxobacter dehalogenans gen. nov., sp. nov., an Aryl-Halorespiring Facultative Anaerobic Myxobacterium. Applied and Environmental Microbiology, 68(2), 893. https://doi.org/10.1128/AEM.68.2.893-900.2002

Saxena, A. K., Kumar, M., Chakdar, H., Anuroopa, N., and Bagyaraj, D. J. 2020. Bacillus species in soil as a natural resource for plant health and nutrition. Journal of Applied Microbiology, 128(6), pp. 1583–1594. https://doi.org/10.1111/JAM.14506

Schaefer, D. 1973. Beitraege zur Klassifizierung und Taxonomie der Actinoplanaceen.

Schmidt, R., Gravuer, K., Bossange, A. V., Mitchell, J., & Scow, K. 2018. Long-term use of cover crops and no-till shift soil microbial community life strategies in agricultural soil. PloS one, 13(2), e0192953. https://doi.org/10.1371/journal.pone.0192953

Seki, T., Matsumoto, A., Shimada, R., Inahashi, Y., Omura, S., and Takahashi, Y. 2012. Conexibacter arvalis sp. nov., isolated from a cultivated field soil sample. International Journal of Systematic and Evolutionary Microbiology, 62(10), pp. 2400–2404. https://doi.org/10.1099/ijs.0.036095-0/cite/refworks

Séneca, J., Pjevac, P., Canarini, A., Herbold, C. W., Zioutis, C., Dietrich, M., Simon, E., Prommer, J., Bahn, M., Pötsch, E. M., Wagner, M., Wanek, W., and Richter, A. 2020. Composition and activity of nitrifier communities in soil are unresponsive to elevated temperature and CO2, but strongly affected by drought. The ISME Journal 2020 14:12, 14(12), pp. 3038–3053. https://doi.org/10.1038/s41396-020-00735-7

Shen, F. T., Kämpfer, P., Young, C. C., Lai, W. A., and Arun, A. B. 2005. Chryseobacterium taichungense sp. nov., isolated from contaminated soil. International Journal of Systematic and Evolutionary Microbiology, 55(3), pp 1301–1304. https://doi.org/10.1099/ijs.0.63514-0/cite/refworks

Souza, R. D., Ambrosini, A., & Passaglia, L. M. 2015. Plant growth-promoting bacteria as inoculants in agricultural soils. Genetics and molecular biology, 38, 401-419. https://doi.org/10.1590/S1415-475738420150053

Soylak, M. U. S. T. A. F. A., KARATEPE, A. U., Elçi, L., & DO?AN, M. 2003. Column preconcentration/separation and atomic absorption spectrometric determinations of some heavy metals in table salt samples using amberlite XAD-1180. Turkish Journal of Chemistry, 27(2), 235-242.

Spain, A. M., Krumholz, L. R., and Elshahed, M. S. 2009. Abundance, composition, diversity and novelty of soil Proteobacteria. The ISME Journal 2009 3:8, 3(8), pp. 992–1000. https://doi.org/10.1038/ismej.2009.43

Sumner, M. E., & Miller, W. P. 1996. Cation exchange capacity and exchange coefficients. Methods of soil analysis: Part 3 Chemical methods, 5, 1201-1229.

Sun, R., Li, W., Dong, W., Tian, Y., Hu, C., & Liu, B. 2018. Tillage changes vertical distribution of soil bacterial and fungal communities. Frontiers in microbiology, 9, 699. https://doi.org/10.3389/fmicb.2018.00699

Urgiles-Gómez, N., Avila-Salem, M. E., Loján, P., Encalada, M., Hurtado, L., Araujo, S., ... & Cornejo, P. 2021. Plant growth-promoting microorganisms in coffee production: from isolation to field application. Agronomy, 11(8), 1531. https://doi.org/10.3390/agronomy11081531

Valencia-Cantero, E., Hernández-Calderón, E., Velázquez-Becerra, C., López-Meza, J. E., Alfaro-Cuevas, R., and López-Bucio, J. 2007. Role of dissimilatory fermentative iron-reducing bacteria in Fe uptake by common bean (Phaseolus vulgaris L.) plants grown in alkaline soil. Plant and Soil, 291(1–2), pp. 263–273. https://doi.org/10.1007/s11104-007-9191-y/figures/5

Valinsky, L., Vedova, G. Della, Scupham, A. J., Alvey, S., Figueroa, A., Yin, B., Hartin, R. J., Chrobak, M., Crowley, D. E., Jiang, T., and Borneman, J. 2002. Analysis of bacterial community composition by oligonucleotide fingerprinting of rRNA genes. Applied and Environmental Microbiology, 68(7), pp. 3243–3250. https://doi.org/10.1128/aem.68.7.3243-3250.2002

Velázquez-Becerra, C., Macías-Rodríguez, L. I., López-Bucio, J., Altamirano-Hernández, J., Flores-Cortez, I., and Valencia-Cantero, E. 2011. A volatile organic compound analysis from Arthrobacter agilis identifies dimethylhexadecylamine, an amino-containing lipid modulating bacterial growth and Medicago sativa morphogenesis in vitro. Plant and Soil, 339(1), pp. 329–340. https://doi.org/10.1007/S11104-010-0583-Z/FIGURES/7

Veloso, T. G. R., da Silva, M. D. C. S., Cardoso, W. S., Guarçoni, R. C., Kasuya, M. C. M., & Pereira, L. L. 2020. Effects of environmental factors on microbiota of fruits and soil of Coffea arabica in Brazil. Scientific Reports, 10(1), 14692. https://doi.org/10.1038/s41598-020-71309-y

Wang, K., Jia, R., Li, L., Jiang, R., and Qu, D. 2020. Community structure of Anaeromyxobacter in Fe(III) reducing enriched cultures of paddy soils. Journal of Soils and Sediments, 20(3), pp. 1621–1631. https://doi.org/10.1007/s11368-019-02529-7/tables/2

Wang, Y., Li, C., Tu, C., Hoyt, G. D., DeForest, J. L., & Hu, S. 2017. Long-term no-tillage and organic input management enhanced the diversity and stability of soil microbial community. Science of the Total Environment, 609, 341-347. https://doi.org/10.1016/j.scitotenv.2017.07.053

Williams, S. D., Barkla, B. J., Rose, T. J., & Liu, L. 2022. Does Coffee Have Terroir and How Should It Be Assessed?. Foods, 11(13), 1907. https://doi.org/10.3390/foods11131907

Wuenscher, R., Unterfrauner, H., Peticzka, R., & Zehetner, F. 2015. A comparison of 14 soil phosphorus extraction methods applied to 50 agricultural soils from Central Europe. Plant, Soil and Environment, 61(2), 86-96. https://doi.org/10.17221/932/2014-PSE

Xin, X. L., Yang, W. L., Zhu, Q. G., Zhang, X. F., Zhu, A. N., & Zhang, J. B. 2018. Abundance and depth stratification of soil arthropods as influenced by tillage regimes in a sandy loam soil. Soil Use and Management, 34(2), 286-296. https://doi.org/10.1111/sum.12412

Yin, C., Casa Vargas, J. M., Schlatter, D. C., Hagerty, C. H., Hulbert, S. H., and Paulitz, T. C. 2021. Rhizosphere community selection reveals bacteria associated with reduced root disease. Microbiome, 9(1), pp. 1–18. https://doi.org/10.1186/S40168-020-00997-5/tables/4

Yin, C., Jones, K. L., Peterson, D. E., Garrett, K. A., Hulbert, S. H., & Paulitz, T. C. 2010. Members of soil bacterial communities sensitive to tillage and crop rotation. Soil Biology and Biochemistry, 42(12), 2111-2118. https://doi.org/10.1016/j.soilbio.2010.08.006

Youssef, N. H., and Elshahed, M. S. 2008. Diversity rankings among bacterial lineages in soil. The ISME Journal 2009 3(3), pp. 305–313. https://doi.org/10.1038/ismej.2008.106

Yu, Y., Lee, C., Kim, J., & Hwang, S. (2005). Group?specific primer and probe sets to detect methanogenic communities using quantitative real?time polymerase chain reaction. Biotechnology and bioengineering, 89(6), 670-679.

Yunan, D., Xianliang, Q., & Xiaochen, W. 2018. Study on cation exchange capacity of agricultural soils. In IOP Conference Series: Materials Science and Engineering (Vol. 392, p. 042039). IOP Publishing. https://doi.org/10.1088/1757-899X/392/4/042039

Zhang, L., Gao, J. S., Kim, S. G., Zhang, C. W., Jiang, J. Q., Ma, X. T., Zhang, J., and Zhang, X. X. 2016. Novosphingobium oryzae sp. nov., a potential plant-promoting endophytic bacterium isolated from rice roots. International Journal of Systematic and Evolutionary Microbiology, 66(1), pp. 302–307. https://doi.org/10.1099/ijsem.0.000718/cite/refworks

Zheng, Y., Jin, J., Wang, X., Kopittke, P. M., O’Sullivan, J. B., & Tang, C. (2023). Disentangling the effect of nitrogen supply on the priming of soil organic matter: A critical review. Critical Reviews in Environmental Science and Technology, 1-22.

Zhou, L. Y., Chen, X. Y., Du, Z. J., and Mu, D. S. 2019. Pedobacter chinensis sp. nov., a cellulose-decomposing bacterium from arctic tundra soil. International Journal of Systematic and Evolutionary Microbiology, 69(7), pp. 1926–1933. https://doi.org/10.1099/ijsem.0.003403/cite/refworks




URN: http://www.revista.ccba.uady.mx/urn:ISSN:1870-0462-tsaes.v27i2.51960

DOI: http://dx.doi.org/10.56369/tsaes.5196



Copyright (c) 2024 Lorena Jacqueline Gómez-Godínez, Víctor Ochoa, Valeria Faggioli, Marco Cristancho

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.