ANALYSIS OF Carica papaya L. GROWTH UNDER PRSV-P INFECTION

Mepivoseth Castelán-Estrada, Juan A. Villanueva-Jiménez, Francisco Osorio-Acosta, Tomás Medina-Sánchez

Abstract


Background. Papaya (Carica papaya L.) is cultivated in tropical and subtropical regions of the world for its nutritious and healthy fruits intended mainly for fresh consumption. Mexico was the world's leading papaya exporter in 2020 with 167,500 t. C. papaya is attacked by several viral diseases, the ring spot virus (PRSV-P) is the one that causes the most damage to the crop and the greatest production losses. Objective. To establish the phenology of a Carica papaya L. ‘Maradol Roja’ population infected with PRSV-P, to quantify its growth, and to relate its phenological steps with the accumulated degree days (DD). Methodology. The emissions of leaves, flower buds, flowers and fruits, apparent height of the plant, stem diameter and biomass were evaluated, based on the DD accumulated during the growth cycle. Results. The growth cycle is divided into nine phenological stages, where the leaf or flower bud formation requires ≈ 18 DD. In plants, the number of leaves is approximately equal to the number of flower buds. However, the number of ripe fruits is variable due to the adverse conditions that can occur throughout the growth period. To some extent, the roots typically present two growth peaks, although the available moisture in the soil could change this pattern. The apparent height of the plant and the stem diameter present a double sigmoid growth curve, with a maximum apparent height of 180 cm, and a diameter at the base of 11 cm. Implications. The infection by PRSV-P reduced the productivity and commercial quality of the fruits. Conclusions. PRSV-P infection reduced apparent height, stem diameter, number of leaves, flowers, and fruits, decrease in biomass gain, and shortened life cycle of plants.

Keywords


biomass; degree-days; fruits; plant development; red Maradol.

Full Text:

PDF

References


Ahmed, A., Biswas, M. and Hossain, A.K., 1992. Effect of lime and boron on yield and quality of papaya fruit. Acta Horticulturae, 321, pp. 653-658. https://doi.org/10.17660/ActaHortic.1992.321.79

Allan, P. 2002. Carica papaya responses under cool subtropical growth conditions. Acta Horticulturae, 575, pp. 757-763. https://doi.org/10.17660/ActaHortic.2002.575.89

Almeida, F.T.D., Bernardo, S., Sousa, E.F.D., Marin, S.L.D. and Grippa, S., 2003. Growth and yield of papaya under irrigation. Scientia Agricola, 60, pp. 419-424. https://doi.org/10.1590/S0103-90162003000300001

An, N., Jin-Hui, L., Hua-Qing, M., Yi-Qun, D., Ping, C., Cao, H. and Jeyakumar, J.M.J., 2022. Transcript profiling of papaya (Carica papaya L.) with CTS-N fertiliser after inoculation with PRSV. The Journal of Horticultural Science and Biotechnology, 97, pp. 466–475. https://doi.org/10.1080/14620316.2021.2014990

Arrieta, R.A. and Carrillo, E.A., 2002. Respuesta del papayo variedad Maradol a tres espaciamientos de drenaje subsuperficial. Terra Latinoamericana, 20, pp. 435–447. https://www.redalyc.org/articulo.oa?id=57320408

Berilli, S.S., Gonçalves, O.J., Barbosa, M.A., Bastos, L.G., Fernandes, S.E., Pio Viana, A., Bernardo, S. and Gonzaga, P.M., 2007. Avaliação da taxa de crescimento de frutos de mamão (Carica papaya L.) em função das épocas do ano e graus-dias acumulados. Revista Brasileira do Fruticultura, Jaboticabal SP 29, pp. 11-14. https://doi.org/10.1590/S0100-29452007000100005

Castelán-Estrada, M., Vivin, Ph. and Gaudillère, J.P., 2002. Allometric relationships to estimate seasonal above-ground vegetative and reproductive biomass of Vitis vinifera L. Annals of Botany, 89, pp. 401-408. https://doi.org/10.1093/aob/mcf059

Chávez-Calvillo, G., Contreras-Paredes, A., Mora-Macias, J., Noa-Carrazana, J., Serrano-Rubio, A., Dinkova, T.D., Carrillo-Tripp, M. and Silva-Rosales, L., 2016. Antagonism or synergism between papaya ring spot virus and papaya mosaic virus in Carica papaya is determined by their order of infection. Virology, 489, pp. 179–191. https://dx.doi.org/10.1016/j.virol.2015.11.026

Clark, N.M., Van Den Broeck, L., Guichard, M., Stager, A., Tanner, H.G., Blilou, I., Grossmann, G., Iyer-Pascuzzi, A.S., Maizel, A., Sparks, E.E. and Sozzani, R., 2020. Novel imaging modalities shedding light on plant biology: Start small and grow big. Annual Review of Plant Biology, 71, pp. 789–816. https://doi.org/10.1146/annurev-arplant-050718-100038

Elnesr, M.N. and Alazba, A.A., 2016. An integral model to calculate the growing degree-days and heat units, a spreadsheet application. Computers and Electronics in Agriculture, 124, pp. 37-45. http://dx.doi.org/10.1016/j.compag.2016.03.024

Enciso, S., Enciso, L., Flórez, R. and Melo, S., 2019. Efecto de la temperatura y el potencial hídrico sobre el crecimiento y desarrollo de la papaya (Carica papaya). In: Fischer, G., Miranda, D., Magnitskiy, S., Balaguera-López, H.E., Molano, Z. (eds.). Avances de la Horticultura y la Mejora en la Calidad de Vida. Sociedad Colombiana de Ciencias Hortícolas, Bogotá, Colombia. https://doi.org/10.17584/VIIIHorticultura

FAOSTAT. 2022. FAOSTAT Statistics Database. FAO (Food and Agriculture Organization of the United Nations). Rome, Italy. https://www.fao.org/faostat/es/#data/QCL (Accessed 8th November 2022).

García-Viera, M.A., Sánchez-Segura, L., Chavez-Calvillo, G., Jarquín-Rosales, D. and Silva-Rosales, L., 2018. Changes in leaf tissue of Carica papaya during single and mixed infections with Papaya ringspot virus and Papaya mosaic virus. Biologia Plantarum, 62, pp. 173-180. https://doi.org/10.1007/s10535-017-0741-8

Hamim, I., Borth, W.B., Marquez, J., Green, J.C., Melzer, M.J. and Hu, J.S., 2018. Transgene-mediated resistance to Papaya ringspot virus: Challenges and solutions. Phytoparasitica, 46, pp. 1–18. https://doi.org/10.1007/s12600-017-0636-4

Hernández C., E., Damian N., A., Mora A., A., Villanueva J., J.A., Vargas A., D. and Palemon A., F., 2015. Chapter 7. Incidence of the papaya ringspot virus (PRSV-p) and management in the state of Guerrero, Mexico. In: Dimitrov T., S. and Vitanova I., I. (eds.) Tropical Fruits. Nova Science Publisher Inc. https://doi.org/10.13140/RG.2.1.3437.5203

Hernández-Castro, E., Riestra-Díaz, D., Villanueva-Jiménez, J. and Mosqueda-Vázquez, R., 2003. Análisis epidemiológico del virus de la mancha anular del papayo bajo diferentes densidades, aplicación de extractos acuosos de semillas de nim (Azadirachta indica A. Juss.) y eliminación de plantas enfermas cv. Maradol roja. Revista Chapingo Serie Horticultura, 9, pp. 55-68. https://doi.org/10.5154/r.rchsh.2001.02.011

Hernández-Castro, E., Villanueva-Jiménez, J.A., Mosqueda-Vázquez, R. and Mora-Aguilera, J.A., 2004. Efecto de la erradicación de plantas enfermas por el PRSV-P en un sistema de manejo integrado del papayo (Carica papaya L.) en Veracruz, México. Revista Mexicana de Fitopatología, 22, pp. 382-388. https://www.redalyc.org/pdf/612/61222311.pdf

Mangrauthia, S.K., Shakya, V.P.S., Jain, R.K. and Praveen, S., 2009. Ambient temperature perception in papaya for papaya ringspot virus interaction. Virus Genes, 38, pp. 429-434. https://doi.org/10.1007/s11262-009-0336-3

Miranda-Ramírez, J.M., Aguilar-García, O., Aguilar-García, J., Miranda-Medina, D. and del Val-Díaz, R., 2018. Productividad agrícola - económica del cultivo de papaya (Carica papaya L.) en Buenavista Michoacán, México. Revista de la Facultad de Contaduría y Ciencias Administrativas, 3(6), pp. 43-53. https://rfcca.umich.mx/index.php/rfcca/article/view/90

Osorio-Acosta, F., Villanueva-Jiménez, J.A., Celis-León, B., Morales-Rodríguez, A. and José-Pablo, R., 2016. Insecticidas en la transmisión del virus de la mancha anular de Carica papaya L., mediante Aphis nerii (Boyer de Fonscolombe). Agroproductividad, 9, pp. 68-74. https://www.revista-agroproductividad.org/index.php/agroproductividad/article/view/834

Santos Martins, D., Ventura, A.J., Paula, A.L.R.C., Fornazier, M.J., Rezende, J.A.M., Culik, M.P., Fiuza Ferreira, P.S., Peronti, A.L.B.G., Zonta de Carvalho, R.C. and Sousa-Silva, C.R., 2016. Aphid vectors of Papaya ringspot virus and their weed hosts in orchards in the major papaya producing and exporting region of Brazil. Crop Protection, 90, pp. 191-196. http://dx.doi.org/10.1016/j.cropro.2016.08.030

Sósol-Reyes, D., Villanueva-Jiménez, J.A., Osorio-Acosta, F. and Noa-Carrazana, J.C., 2020. Radial graphics to characterize PRSV-P symptoms in Carica papaya. Mexican Journal of Phytopathology, 38, pp. 280-292. https://dx.doi.org/10.18781/R.MEX.FIT.1912-1

Thirugnanavel, A., Balamohan, T.N., Karunakaran, G. and Manoranjitham, S.K., 2015. Effect of papaya ringspot virus on growth, yield and quality of papaya (Carica papaya) cultivars. Indian Journal of Agricultural Sciences, 85, pp. 1069–1073. https://epubs.icar.org.in/ejournal/index.php/IJAgS/article/view/50852

Vázquez, G.E., Mata, V.H., Ariza, F.R. and Santamaría, B.F., 2010. Producción y manejo postcosecha de papaya Maradol en la Planicie Huasteca. Libro Técnico No. 4. Instituto Nacional de Investigaciones Forestales Agrícolas y Pecuarias. Centro de Investigación Regional del Noreste. Campo Experimental Las Huastecas. Villa Cuauhtémoc, Tamaulipas, México. 155 pp. http://www.inifapcirne.gob.mx/Biblioteca/Publicaciones/855.pdf

Velásquez, A.C., Castroverde, D.M.C. and Yang, H.S., 2018. Plant–pathogen warfare under changing climate conditions. Current Biology, 28, pp. 619–634. https://doi.org/10.1016/j.cub.2018.03.054

Villanueva-Jiménez, J.A., Osorio-Acosta, F., Hernández-Castro, E., Téliz-Ortiz, D., Ávila-Reséndiz, C., Abato-Zárate, M., Reyes-Pérez, N., Mora-Aguilera, A., Cano-Reyes, O., Reta-Mendiola, J.L., Cabrera-Mireles, H, and González-Munguía, M.V., 2019. Integrated management of papaya pests in Veracruz: PRSV-p, papaya mealybug and mites. Acta Horticulturae, 1250. https://doi.org/10.17660/ActaHortic.2019.1250.10

Vincent, L, Soorianathasundaramb, K., Dineshc, M.R., Shivashankarad, K.S. and Vasugi, C., 2022. Change in physiological parameters and partitioning of sugar upon Papaya ringspot virus infection in Carica papaya and its wild relatives. South African Journal of Botany, 151, pp. 466-474. https://doi.org/10.1016/j.sajb.2022.10.033

Voloudakis, A.E., Kaldis, A. and Patil, B.L., 2022. NA-based vaccination of plants for control of viruses. Annual Review of Virology, 9, pp. 521–548. https://doi.org/10.1146/annurev-virology-091919-073708

Walter, A., Silk, W.K. and Schurr, U., 2009. Environmental effects on spatial and temporal patterns of leaf and root growth. Annual Review of Plant Biology, 60, pp. 279–304. https://doi.org/10.1146/annurev.arplant.59.032607.092819




URN: http://www.revista.ccba.uady.mx/urn:ISSN:1870-0462-tsaes.v27i2.51255

DOI: http://dx.doi.org/10.56369/tsaes.5125



Copyright (c) 2024 Mepivoseth Castelán-Estrada, Juan A. Villanueva-Jiménez, Francisco Osorio-Acosta, Tomás Medina-Sánchez

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.